# STRATIFIED-DRIFT AQUIFERS IN NEW HAMPSHIRE <br> WITH POTENTIAL TO SERVE AS FUTURE, LARGE PUBLIC WATER-SUPPLIES: <br> STATUS, CIRCA 2000; PROJECTED LOSSES, CIRCA 2025; AND DATA ACCURACY 

BY<br>JOHN ALEXANDER LOUGH<br>B.A. University of Southern Maine, 1977<br>M.S. University of New Hampshire, 1992

## DISSERTATION

Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Degree of

## Doctor of Philosophy

In
Natural Resources and Environmental Studies

ALL RIGHTS RESERVED C 2008

John A. Lough

This thesis has been examined and approved.

Thesis Director, Russell Congalton
Professor of Remote Sensing and Geographic Information Systems

Mimi Larsen Becker,
Associate Professor of Natural Resources and Environmental Policy

Thomas Ballestero,
Associate Professor of Water Resources,

David P. Brown, Ph.D.
Assistant Professor of Geography
Department of Geography \& Anthropology, Louisiana State University

Frederick Chormann
Manager, New Hampshire Geological Survey

Richard Bridge Moore
Research Hydrologist, US Geological Survey

## DEDICATION

This work is dedicated to you, living in the times after May 2005, upon whose shoulders others will stand; and to those who have lived in the times before then, upon whose shoulders we stand.

## FOREWORD

World events have sharpened considerably in the 10 years since I started on this road. At the outset in 1997, I envisioned the possibility of climate refugees from dryer regions of the US, seeking out water-rich states such as NH in perhaps a century. Now in 2008, as we sense ever more keenly the possibilities of a US water crisis, peak oil, abrupt climate change and food shortages, it appears that environmental refugees may be seeking out such regions far sooner... on the order of a decade or two. The release of this three part study into the current and future availability of stratified-drift aquifers is well timed, as a result.

## ACKNOWLEDGEMENTS

I would like first to express my gratitude to the members of my committee: Mimi Becker Tom Ballestero, David Brown, Rich Moore, and Rick Chormann; all of whom patiently worked with me throughout the long roller-coaster ride of this dissertation. Mimi, thanks for your social policy perspectives, for your input on how to promote the work after its completion, and for somehow finding the time to review this work this semester. David, a special thanks for willingly stepping in late in the project and sticking with it, even after leaving UNH. Tom, thank you for your strong technical questions and unparalleled turnaround of materials.

Special gratitude goes to Rick Chormann of the New Hampshire Geological Survey and Rich Moore of the US Geological Survey. Rick served as the state liaison on the aquifer studies, and Rich authored/coauthored several of the aquifer studies. Rick initially envisioned the general concept of using GIS to evaluate remaining high-yield stratified drift aquifer in NH , and later hired myself to develop the pilot project. Together they served on the steering committee of the pilot project, and patiently provided a vast amount of technical assistance to this dissertation. Their dedicated public service laid the foundation for this work.

Great gratitude also goes to Russ Congalton, my advisor, who has always remained upbeat and encouraging, with a long term outlook, and had a wealth of practical advice. Russ, I could not have had a better advisor.

More locally, thanks go to Ginny Harmon for her willingness to proofread, and her valiant attempts to rein my rampant hyphenation.

To Pat Proulx-Lough, thank you for your love, loyalty, patience and encouragement throughout this project. Simply stated, this work is as much yours as mine. Words cannot express my love for you.

To Audrey, and John, Thank you again for your love and laughter along the way. You have made the trip far more worthwhile, and much more fun than you know.

To Captain and Mrs. J. C. Lough, Thank you for 1000 gifts that I cannot explain...
... 1000 cranes ... 1000 candles ...Every day I will remember...
Laudate Dominum
May 21, 2008

## TABLE OF CONTENTS

STRATIFIED-DRIFT AQUIFERS IN NEW HAMPSHIRE ..... iv
WITH POTENTIAL TO SERVE ..... iv
AS FUTURE, LARGE PUBLIC WATER-SUPPLIES ..... iv
STATUS, CIRCA 2000; ..... iv
PROJECTED LOSSES, CIRCA 2025; ..... iv
AND DATA ACCURACY ..... iv
Dedication ..... iv
Foreword ..... v
Acknowledgements ..... vi
Table of Contents ..... vii
Table of Tables ..... ix
Table of Figures ..... x
Table of Figures ..... x
ABBREVIATIONS ..... xii
ABBREVIATIONS Regarding Stratified-Drift ..... xiii
Geographic information system (GIS) Glossary ..... xiv
Units ..... xV
Abstract ..... xvi
Introduction ..... 1
The Emerging Water Crisis in the United States ..... 1
The U.S. Water Crisis in Relation to New England ..... 6
The Value of Stratified-Drift Aquifers As Public Water-Supplies ..... 7
Research Questions ..... 10
I PRELIMINARY EVALUATION OF REMAINING STRATIFIED-DRIFT AQUIFERS IN NEW HAMPSHIRE, WITH POTENTIAL TO SERVE AS LARGE WATER SUPPLy, CIRCA 2000 ..... 11
Introduction ..... 11
Literature Review ..... 12
Methods ..... 18
Results ..... 38
Question 1 ..... 38
Question 2 ..... 41
Question 3 ..... 47
Chapter I Conclusion ..... 56
II Projection of Stratified-Drift Aquifer Losses in NH to 2025 ..... 60
Introduction ..... 60
Literature Review ..... 62
Methods ..... 67
Method Overview ..... 68
Projected Populations on High-yield aquifer ..... 78
Results ..... 81
Population Accuracy ..... 81
State Populations on Uplands and Stratified Drift ..... 81
The Influence of Aquifer Protection Ordinances ..... 84
Scenarios for Stratified-Drift Aquifer Populations in 2025 ..... 85
Discussion ..... 87
Relationship of State and On-Aquifer Populations ..... 87
Aquifer Development ..... 88
Buffer Overlap ..... 89
Aquifer Fragmentation ..... 91
Aquifer Response to Population Increase ..... 93
High Aquifer Losses in Early Development ..... 94
Location of On-Aquifer Population Growth ..... 95
Projected RSDA75 in 2025 ..... 96
Chapter II Conclusion ..... 98
III Evaluation of the Accuracy of Classed Saturated Thickness ..... 102
Introduction ..... 102
The Value of Stratified-Drift Aquifers ..... 102
Knowledge of Data Limitations ..... 103
Research Direction ..... 103
Literature Review ..... 104
Spatial Error Analysis ..... 104
Methods ..... 110
Method Overview ..... 110
Results ..... 118
Saturated-Thickness Interval Error-Matrices ..... 118
Discussion ..... 121
Map-User Accuracy and Class Offsets ..... 121
Transmissivity vs. Saturated-Thickness ..... 127
Mazzafero Analyses of b-Sufficiency for Sustained Yields ..... 130
Chapter III Conclusion ..... 143
Analysis of 20 ft and 40 ft b-Interval Error Matrices ..... 143
Mazzafero b-Sufficiency Analysis ..... 144
IV DISSERTATION CONCLUSION ..... 146
Overview ..... 146
REFERENCES ..... 156
APPENDICES ..... 163
APPENDIX A EXPLANATIOF WELL TYPES ..... 164
APPENDIX B STRATIFIED-dRIFT aQUIFERS ..... 166
APPENDIX C NHDES SANITARY PROTECTIVE RADII ..... 171
APPENDIX D BUFFERS FOR POTENTIAL CONTAMINATION SOURCES ..... 173
APPENDIX E BUFFERS FOR KNOWN CONTAMINATION SOURCES ..... 175
APPENDIX F AQUIFER PROTECTION T-TEST PAIRS ..... 177
APPENDIX G CHARACTERISTICS OF1300 VERIFCATION WELLS ..... 179
APPENDIX H 1990 AND 2000 AQUIFER-SUBSET POPULATIONS BY TOWN ..... 206
APPENDIX I OSDA75 AND OSDA75 LOSSES BY TOWN FOR 2025 ..... 216
APPENDIX J OSDA150 AND OSDA150 LOSSES BY TOWN FOR 2025 ..... 225

## TABLE OF TABLES

Table 1. Area and percentages of NH area for urban landcover classes ..... 20
Table 2. Regional percentages for urban land cover ..... 20
Table 3. Thirteen Potential and Known Contamination GIS Datasets for NH. ..... 25
Table 4. Well yields, transmissivities and sanitary protective radii, ..... 29
Table 5. Four well-yield classes ..... 30
Table 6. T-ranges, areas, yield classes and Stratified-Drift Aquifer subsets ..... 32
Table 7. Buffers (SPR+1/2 right-of-way) for roads. ..... 34
Table 8. Potential and Known Contamination Sources. ..... 39
Table 9. Potential and Known Contamination Sources across yield classes. ..... 40
Table 10. Areal summaries of 75 gpm and 150 gpm I Favorable Gravel Well. ..... 42
Table 11. Percentage summaries of 75 gpm and 150 gpm of FGW analyses ..... 42
Table 12. Regional area summaries of the 75/150 gpm FGW analyses. ..... 48
Table 13. Regional percentages for the 75 gpm and 150 gpm FGW analyses: ..... 48
Table 14. Frequency and area of RSDA75 for 259 NH towns. ..... 49
Table 15. Frequency and area of RSDA150 for 259 NH ..... 50
Table 16. Statistics for OSDA75, RSDA75, OSDA150 and RSDA150 in 2000. ..... 66
Table 17. Characteristics of OSDA75L and OSDA150L aquifer-loss models. ..... 76
Table 18. 1990-2000 growth for population subsets in New Hampshire. ..... 81
Table 19. 1990-2000 growth for population subsets as percentages ..... 82
Table 20. Change in population density by aquifer subset. ..... 83
Table 21. Statistics for protected and unprotected T-Test subsets ..... 84
Table 22. Projected Populations for 2025 ..... 86
Table 24. Potential and actual OSDA75/OSDA150 area lost and overlap ..... 90
Table 25. A sample error matrix ..... 110
Table 26. USGS stratified-drift aquifer study areas and saturated-thickness contour-intervals ..... 116
Table 27 The 20 ft and 40 ft b-interval saturated thickness error matrices ..... 120
Table 28. Summary statistics for the 1003 verification wells ..... 122
Table 29. High-T saturated-thickness error-matrix ..... 128
Table 30. Low-T saturated-thickness error-matrix ..... 129
Table 31. Criteria of 4 classes of well-likelihood to sustain a long term yield. ..... 136
Table 32. Verification wells classed by transmissivity and saturated thickness ..... 137
Table 33. Krasny-transmissivity-yield models and T/b matrix ..... 138
Table 34. Subsets of likelihood for sufficient $b$ to sustain $Q=150 \mathrm{gpm}$ ..... 139
Table 35. Saturated thickness sufficiency estimates for RSDA75 ..... 140
Table 36. RSDA75 and RSDA150 after updating for Mazzaferro sufficiency ..... 141
Table 37. Updated regional estimates of RSDA75 and RSDA150 ..... 142
Table A38. NHDES Sanitary Protective Radii for Water-Supply Wells. ..... 172
Table A39. Buffers for Potential Contamination Sites ..... 174
Table A40. Buffers for Known Contamination Sites ..... 176

## TABLE OF FIGURES

Figure 1. Average annual freshwater consumption and precipitation. ..... 3
Figure 2. National drought conditions, August 27, 2002 ..... 4
Figure 3. Pumping yields for wells in stratified drift and in bedrock ..... 8
Figure 4. The distribution of stratified drift in NH. ..... 9
Figure 5. Urban deatures and Stratified-Drift Aquifer in New Hampshire ..... 21
Figure 6. Histograms for OSDA75, OSDA150, RSDA75 and RSDA150 ..... 44
Figure 7. Histogram of OSDA75/RSDA75 area by towns. ..... 45
Figure 8. Histogram of OSDA150 and RSDA150 area by towns ..... 46
Figure 9. Histogram of RSDA75 for 259 New Hampshire towns ..... 49
Figure 10. Histogram of RSDA150 for 259 New Hampshire municipalities ..... 50
Figure 11. Area of RSDA75 by town. ..... 52
Figure 12. Area of RSDA150 by town. ..... 53
Figure 13. RSDA75 in New Hampshire. ..... 54
Figure 14. RSDA150 in New Hampshire. ..... 55
Figure 15. Upland areas, OSDA, OSDA<75, OSDA75, and OSDA150 as a percent of New Hampshire's area ..... 66
Figure 16. Three perspectives of stratified drift with potential to yield 75 gpm or greater aquifer lost (OSDA75L) by town as of 2000 vs. aquifer area and on-aquifer population. ..... 75
Figure 17. OSDA75L for 2000 measured vs. predicted ..... 77
Figure 18. A plot of the residuals for the modeled OSDA75L ..... 77
Figure 19. Aquifer development for OSDA75 for 212 NH towns ..... 88
Figure 20. Potential OSDA75L and OSDA150L as of 2000, by category, if buffer overlap is not considered ..... 89
Figure 21. Relative OSDA75 buffer overlap as of 2000 ..... 92
Figure 22. Fragmentation of OSDA75 aquifers as of 2000. ..... 92
Figure 23. Theoretical \%OSDA75 loss versus aquifer population ..... 93
Figure 24. OSDA75 lost to road buffers in 2000 ..... 94
Figure 25. Town OSDA75P growth classes for 2000-2025, under Scenario B ..... 95
Figure 26. Projected RSDA75 in 2025 for 212 towns in New Hampshire. ..... 96
Figure 27. The status of OSDA75 as of 2000 for 212 towns in NH ..... 98
Figure 28. The life cycle of a natural resource database. ..... 105
Figure 29. Life cycle of a derivative map ..... 106
Figure 30. Uplands, OSDA, OSDA150 as a percent of NH area ..... 109
Figure 31. Saturated thickness ..... 114
Figure 32. Mapped saturated-thickness contour-interval classes for the 1300 verification wells. ..... 117
Figure 33. Map-user accuracies by mapped b-class (ft). ..... 121
Figure 34. Exceedance probabilities for saturated thickness ..... 123
Figure 35. Over-classed and under-classed wells for the 20 ft b-interval ..... 124
Figure 36. Over-classed and under-classed wells for the 40 ft b-interval ..... 124
Figure 37. The class-offset analysis for $20 \mathrm{ft} \mathrm{b-interval} \mathrm{studies}$. ..... 125
Figure 38. The class-offset analysis for the 40 ft b-interval studies. ..... 126

Figure 39. Evaluation of the representativeness the 1300 verification wellsfor OSDA
Figure 40. Evaluation of the representativeness for RSDA75 and Low-T
RSDA75. ................................................................................... 131
Figure 41. Evaluation of the representativeness of verification wells for
RSDA150 and Low-T RSDA150. ................................................. 132
Figure 42. Theoretical yields of the Krasny and Mazzaferro equations by $\begin{aligned} & \text { saturated thickness...................................................................... } 134\end{aligned}$

|  | ABBREVIATIONS |
| :---: | :---: |
| ArcGIS | The specific geographic information system used for this study |
| CERCLA | Comprehensive Environmental Response, Compensation, and Liability Act |
| FGWA | Favorable Gravel Well Analysis |
| GIS | Geographic Information System |
| GRANIT | The official New Hampshire GIS dataset repository |
| NH | New Hampshire |
| NHDES | New Hampshire Department of Environmental Services |
| NHDOT | New Hampshire Department of Transportation |
| NHGS | New Hampshire Geological Survey |
| NHTRI | New Hampshire Toxic Release Inventory |
| NRPC | Nashua Regional Planning Commission |
| PKCS | Potential and Known Contamination Sites |
| RCRA | Resource Conservation Recovery Act |
| Res/Com/Ind | Residential, Commercial, and Industrial Landcover |
| SJRWMD | St. John's River Water Management District |
| SPNHF | Society for the Protection of New Hampshire Forests |
| SPR | Sanitary Protective Radius |
| SWAP | Source-Water Assessment Program |
| T | Transmissivity ( $\mathrm{ft}^{2} / \mathrm{d}$ ) |
| USGS | US Geological Survey |
| WHPA | Wellhead Protection Area |

## ABBREVIATIONS REGARDING STRATIFIED-DRIFT

b Saturated thickness
OSDA An area (mi ${ }^{2}$ ) of Original Stratified-Drift Aquifer, as delineated by the USGS, for a region such as a town or state.

OSDA<75 An OSDA subset having potential for less than 75 gpm well yield.
OSDA75 An OSDA subset having potential for 75 gpm or greater well yield.
OSDA75L The area of OSDA75 lost to water quality setbacks at a given time.
OSDA75P The population residing on a given town's OSDA75 aquifer.
RSDA75 A subset of OSDA, and usually a further subset of OSDA75. These areas have the potential to supply a 75 gpm or greater well yield, after water quantity and minimum water quality considerations An exception is Low-T RSDA75, areas of OSDA<75 which are neither 100\% Till nor 100\% Clay, and have sufficient saturated thickness to possibly yield 75 gpm under the Mazzafero equation.

OSDA<150 A subset of OSDA having the potential to supply less than a 150 gpm well yield.

OSDA150 A subset of OSDA having the potential to supply 150 gpm or greater well yield. It is also a subset of OSDA75.

OSDA150L An area of OSDA150 lost to water quality setbacks at a given time.
OSDA150P The population residing on a given town's OSDA150 aquifer.
RSDA150 A subset of OSDA, and further subset of OSDA150. These areas have the potential to supply a 150 gpm or greater well yield, after water quantity and minimum water quality considerations.
An exception is Low-T RSDA150 areas of OSDA<150 which are neither $100 \%$ Till nor 100\% Clay, and have sufficient saturated thickness to possibly yield 150 gpm under the Mazzafero equation.

T Transmissivity ( $\mathrm{ft}^{2} / \mathrm{d}$ )
Yield Class One of four mutually-exclusive, sequential, expected well-yield subsets of USGS transmissivity ranges, used to develop OSDA<75, OSDA75, OSDA<150 and OSDA150.

## GEOGRAPHIC INFORMATION SYSTEM (GIS) GLOSSARY

| Coverage | An ARC/INFO vector GIS data layer. |
| :--- | :--- |
| Layer | Digital vector or raster spatial data. |
| Overlay | To combine 2 or more vector GIS data layers to <br> generate a resulting map. |
| Pixel | One cell in a grid of uniformly sized cells. |
| Point Feature | A vector GIS point in space, such as a <br> contamination site or monument site. Point <br> features can have one or more thematic attributes <br> assigned to them. |
| Polygon Feature | A vector GIS area defined by its external boundary. <br> Polygons can have one or more thematic attributes <br> assigned to them. |
| Raster GIS | A GIS based on a uniform grid of pixels. Typically <br> a single layer contains only 1 thematic attribute <br> (e.g. soil type). |
| Thematic Attribute | Any theme or variable that can be assigned in <br> space (e.g. elevation, landcover, etc.) |
| Vector GIS | A GIS based on defining spatial areas with a <br> common thematic attribute by their external <br> boundaries. |
| Rectify | The process of removing geometric distortions from <br> a raster remotely-sensed image to produce an <br> image geo-referenced to an accepted cartographic <br> standard. |

## UNITS

| $\mathbf{f t}$ | feet |
| :--- | :--- |
| $\mathbf{f t}^{2} / \mathbf{d}$ | feet squared per day |
| $\mathbf{f t}^{3} / \mathbf{d} / \mathbf{g p m}$ | feet cubed per day per gallon per minute |
| $\mathbf{g p m}$ | gallons per minute |
| $\mathbf{m i}^{\mathbf{2}}$ | miles squared |

# Abstract <br> STRATIFIED-DRIFT AQUIFERS IN NEW HAMPSHIRE WITH POTENTIAL TO SERVE AS FUTURE, LARGE PUBLIC WATER-SUPPLIES: STATUS, CIRCA 2000; PROJECTED LOSSES, CIRCA 2025; AND DATA ACCURACY 

by
John A. Lough
University of New Hampshire, May 2008
Given the growing national water crisis, this research quantified and refined the states of stratified-drift aquifers with potential to yield 75+ gpm (OSDA75) and 150+ gpm (OSDA150) in New Hampshire for 2000 and 2025. Surface waters, cultural features and groundwater hazards from 13 federal/state datasets were buffered according to desired well yields, and then overlain within a geographic information system onto stratified-drift aquifer (OSDA) layer. Non-buffered, highly-transmissive polygons defined the aquifer areas remaining available with potential to meet $75+$ gpm or $150+$ gpm well yields (RSDA75 or RSDA150). Aquifer losses for 2025 were modeled by principal-components regression as function of aquifer area and projected on-aquifer populations. Finally, the source OSDA area and RSDA estimates were reassessed using 1300 verification wells.

Results: OSDA encompasses $13.4 \%$ of New Hampshire, $41 \%$ of its population, and $58.3 \%$ of its groundwater hazards. The greatest population and
groundwater-hazard densities exist on the most vulnerable aquifer areas, OSDA75 and OSDA150. After overlay analysis, RSDA75 and RSDA150 were estimated as 118.4 mi $^{2}$ (9.5\%) and 47.6 mi $^{2}$ (3.8\%), respectively. Most towns have less than $0.5 \mathrm{mi}^{2}$ of RSDA75/150, while the majority of RSDA75/150 exists in relatively few towns. Regionally, the highly populated coast has minimal highyield OSDA, while the more urban South and North each have about 5\% and 2\% of the state's RSDA75 and RSDA150, respectively. 1990-2000 population growth for Uplands and OSDA was 14\% and 7\% respectively. Projected OSDA75/150 losses for 2025 were unexpectedly low since historical OSDA population growth was lower than average; losses early in development are high, and the largest aquifers, (those forecast for the greatest population growth), accommodate additional people with lower per capita losses, since buffer overlap increases.

From error assessment of saturated thickness, 26\% of all OSDA is either till, clay or unsaturated. Based on the Mazzafero equation, about 50\% of the above RSDA75 and RSDA150 areas lack sufficient saturated thickness to sustain such high yields.

In conclusion, high-yield stratified-drift aquifers are far less available, and far more threatened than commonly thought. Given the national situation, these future water resources need to be conserved to the greatest degree possible in the present.

## INTRODUCTION

## The Emerging Water Crisis in the United States

The United States (U.S.) is facing an impending water crisis, both in quantity and quality, over the long-term. A prime example of this is the High Plains Aquifer, the major alluvial aquifer immediately east of the Rocky Mountains. This key water resource has experienced substantial water-level declines (up to 175 ft ) in several areas from 1940 to the present. While the rate of decline has generally slowed since 1980 (U.S. Geological Survey (USGS), 1994b), water-level declines exceeding 20 feet since 1980 are widespread in parts of southwestern Kansas, east-central New Mexico, and in the Oklahoma/Texas pan-handles (USGS, 2001).

A recent study in Texas predicts that by 2050, major areas of the southern High Plains Aquifer will have less than 50 feet of remaining saturated thickness, and that parts of the aquifer in six counties may be dry, if mitigating actions are not taken (Dutton et al., 2000). In Kansas, the Arkansas River has been transformed over a period of a few decades from a "gaining river" into a "losing or recharging stream" due to the cumulative effect of groundwater withdrawal in the central High Plains Aquifer (Kansas Department of Agriculture, 2001).

In addition to water-quantity issues, there are significant water-quality issues also associated with the High Plains Aquifer. These include nutrient enrichment of
groundwater from confined animal feeding operations, the effects of saline groundwater from bedrock aquifers discharging into the aquifer, and the effects of agricultural and urban land-use practices on general groundwater quality (USGS, 2002).

The water crisis is emerging in other regions as well. In Arizona, the cities of Prescott, Tucson, and Phoenix are facing increasingly stretched water resources as populations have grown (U.S. Water News Online, July 2000). This situation is exacerbated by the fact that sufficient water flow does not appear to exist in the Colorado River basin to supply the full state allocations of the 1922 Colorado River Compact, due to original inaccuracies in flow measurements and subsequent climate variability (Montgomery, 1992).

A national perspective of developing water-quantity crises by region can be found in Figure 1, which depicts regional freshwater consumption relative to precipitation. Although water can originate outside its area of use, this graphic reveals that, in general, large areas of the western, mid-western and southwestern U.S. are facing growing water quantity problems. These areas are likely to have the least buffer for dealing with extreme drought events. The vulnerability of these areas is evident when the national map of Figure 1 is compared to the drought conditions for the U.S on April 30, 2002 (Figure 2).


Figure 1. Average annual freshwater consumption (1985-1990) from all sources as a percent of local average annual precipitation (1960-1989, including snowfall) (Natural Resources Conservation Service, 1997).

## 



Figure 2. National drought conditions, August 27, 2002 (National Drought Mitigation Center, 2002).

While the East Coast was also experiencing drought, current withdrawals do not exceed precipitation on an average annual basis. This should provide some flexibility for the region in dealing with a multi-year drought.

Climate change may exacerbate such regional crises as the current predictive science indicates that the warming in the 21st century will be significantly larger than in the 20th century. Assuming no major interventions to reduce continued growth of world greenhouse gas emissions, scenarios indicate that temperatures in the U.S. will rise by about $5-9^{\circ} \mathrm{F}\left(3-5^{\circ} \mathrm{C}\right)$ on average in the next 100 years. This rise is very likely to be associated with more extreme precipitation and faster evaporation of water, leading to greater frequency of both very wet and very dry conditions. Although there are some potential benefits to climate change, ecosystems and dependent populations that are already constrained by climate are still likely to face extreme stress. (U.S. Global Change Research Program (USGCRP), 2000).

## The U.S. Water Crisis in Relation to New England

Similar to the continental U.S., the New England area is predicted to be warmer and wetter (punctuated by periodic, long-term droughts) over the next century (USGCRP, 2001). Global climate models used in the New England regional assessment predict a 6-10 F degree increase in average annual temperature. Although simplistic, such an increase would result in Boston having an average annual temperature between that of Richmond, VA and Atlanta, GA (USGCRP, 2001). Fortunately, water demand does not yet exceed supply in this area (Natural Resources Conservation Service (NRCS), 1997), and this is likely to mitigate the effects of extended periods of drought.

As potable water becomes increasingly scarce in the climate-restricted areas of the U.S., logic suggests that under-utilized surface-water will first experience greater demand. Eventually, however, populations may seek areas of less expensive, readily available water, such as in the humid regions of the U.S., the northwestern states and the east-coast states. This suggests that the remaining undeveloped water resources of these areas, including New Hampshire, should be conserved to the degree possible in the present.

## The Value of Stratified-Drift Aquifers As Public Water-Supplies

One in four people in New Hampshire obtain their water from a public watersystem supplied by groundwater, which is about the same as the national average ((Society for the Protection of New Hampshire Forests (SPNHF), 1998b; USGS, 1987; USGS, 1998)). Of the wells in New Hampshire, that serve as large public water-supplies, and produce as much as or more than 75 gpm , about 4 out of 10 are located in bedrock, while 6 of 10 high-yield wells are located in stratified-drift aquifers (New Hampshire Department of Environmental Services (NHDES), public water-supply database, 2003).

Stratified-drift consists of sorted and layered unconsolidated material deposited in melt-water streams flowing from glaciers or settled from suspension and quiet water bodies fed by melt-water streams (Medalie and Moore, 1995). This allows deposits of coarser grain size to store and/or rapidly transmit large quantities of water. For interested readers, Appendices $A$ and $B$ contains greater detail on stratified-drift aquifers, including key terms used later in this document such as transmissivity, hydraulic conductivity, and saturated thickness.

Public water-supply wells located in stratified-drift aquifers are the most productive of groundwater resources. Based on average total daily groundwater withdrawals in 1993, the few stratified-drift wells were about nine times as productive (18 million gal. per day) as all bedrock wells (2 million gal. per day)

High Yield Public Water Supply Wells in NH, 2002


Figure 3. Pumping yields versus well depth for public water-supply wells in stratified drift and in bedrock, based on driller records. (NHDES Public WaterSupply Database, 2002)
(Frederick H. Chormann Jr, NHDES; written communication, 1993; in Medalie and Moore, 1995, p. 4). This difference is clearly evident in Figure 3, even though drilling records are known to have poor estimates of well yields.

Despite its value for public water supply, high-yield stratified drift is scarce, since stratified drift covers only a small part of New Hampshire's area (Figure 4.). Furthermore, these key water resources are increasingly constrained in New Hampshire due to mining for construction purpose, human development spreading across them, and their vulnerability to contamination.


Figure 4. The distribution of stratified drift, and high-yield public water-supplies placed in stratified drift, for NH (NHDES Public Water Supply Database, 2002).

## Research Questions

In light of the growing national water-crisis, there is a great need to identify and conserve remaining high-yield sand and gravel aquifers due to their importance as productive groundwater resources, their relative scarcity, and the dual threats of loss to contamination and development. Specifically natural resource managers and planners have a need to quantify the availability of high-yield stratified-drift aquifer, the rate of its loss, while understanding the limitations of such regional data, in order to use it appropriately in decision-making. Therefore, the specific objectives of this research are to:

1. Investigate and develop a GIS-based method to perform the spatial analysis, and apply the tool to summarize remaining stratified-drift aquifer with potential for high yield in New Hampshire, circa 2000.
2. Project the remaining stratified-drift aquifer with potential for high yield in New Hampshire to 2025 as a function of population.
3. Quantify the classification error existing in the USGS-delineated saturatedthickness data, and update the results of objectives 1 and 2 as needed.

A research question was constructed for each of the above objectives, and is addressed in the following three chapters. Each chapter contains an introduction, a literature review, a methods section, and a discussion section. The chapters are tied together in a final dissertation conclusion.

## CHAPTER I

# PRELIMINARY EVALUATION OF REMAINING STRATIFIED-DRIFT AQUIFERS IN NEW HAMPSHIRE, WITH POTENTIAL TO SERVE AS LARGE WATER SUPPLY, CIRCA 2000. 

## Introduction

## Research Direction

Given the importance of stratified-drift aquifers as productive groundwater resources and their relative scarcity, state and local governments have moved to protect them over the past several decades. However, with the growing threats of development and contamination, there is a great need to identify, quantify and conserve the remaining sand and gravel aquifer areas that have potential to serve as future large municipal water-supplies. Therefore, the specific objectives of this research chapter are:

1) To investigate in greater detail the threat to potentially high-yield stratified-drift aquifers posed by development and contamination.
2) To investigate and analyze the quantity and location of remaining potentially high-yield stratified-drift aquifers in NH,
3) To identify opportunities for conservation for these aquifers in NH.

## Literature Review

## Geographic Information Systems and Public Water-Supplies

Geographic Information Systems (GIS) are effective tools to store, update, manage, analyze, and visualize spatial data. The ability to capture different snapshots in time, and to readily re-distribute the information, gives this approach a distinct advantage in capturing the dynamic nature of environmental data.

One of the most significant pioneering GIS efforts in New Hampshire is related to stratified-drift aquifers. Recognizing the value of these resources, the state of New Hampshire embarked on a cooperative program with the U.S. Geological Survey, beginning in 1985, to study the state's stratified-drift aquifers in detail (USGS, 1995). The project was completed in 1996, and produced both digital and paper maps of saturated-thickness and transmissivity ( $T$ ), for the aquifers of 13 study areas, covering the state. Aquifer transmissivity was commonly estimated as the summation of horizontal transmissivities (each a product of horizontal hydraulic-conductivity (K) times saturated-thickness (b)) for multiple surficial, unconsolidated geologic layers. These calculations were estimated from USGS well logs and numerous private-driller logs. Consultant well pumping-test reports ${ }^{1}$ were also used, if available (USGS, 1992a; USGS 1995).

Perhaps the most common use of GIS in relation to public water-supplies has

[^0]been through the federal Source-Water Assessment Program (SWAP) (U.S. Environmental Protection Agency (USEPA), 1997; NHDES, 1999). This program mandated that surface and groundwater sources for all public drinking-water supplies across the nation be assessed for their vulnerability to potential contamination from point and non-point sources in their watersheds. These assessments were fairly complex, and given that each state program had to complete source-water assessments for thousands of public drinking-water sources, the use of geographic information systems was essential to completing the task within a reasonable time.

Individual SWAP assessments consisted of identifying surface water and groundwater sources, identifying contributing areas, and then compiling the potential contaminant inventory within those areas. This inventory was collected from a variety of sources including: the U.S. Environmental Protection Agency (USEPA), state environmental departments, local and county governments, and watershed groups. After inventory completion, a susceptibility analysis was run. This involved a series of rankings based on the characteristics of potential contaminants, and on the location of the contaminants in relation to the given water supplies. The end products of this analysis were maps showing critical areas within the watersheds that posed the greatest potential threat to water quality. These maps could be used later to develop a protection plan to address problem areas within the watershed (Faga and Misiti, 2001; US EPA, 1998). While the Federal Source-Water Assessment Program has been both laudable
and necessary, it has focused exclusively on existing water supplies, a trend which is common to many federal and state programs. However, and 1994, the USGS performed research in Cape Cod to identify areas available for future use as public water-supply (USGS, 1994a). In this study, the authors, Harris and Steeves, assembled data on the six groundwater-flow cells of the Cape Cod aquifer. All lands were classified into one of four landuse categories: Undeveloped, Agricultural, Residential, and Business/Utility. Seven criteria (three of which were landuses) were selected for a regionally consistent constraint analysis to identify remaining potential public water-supply areas:

1) Restricted Use zones
(national and state parks, private nature preserves and sanctuaries)
2) Wetland zones
3) Agricultural Landuse zones
4) Residential Landuse zones
5) Business (including Industrial)/Utility Landuse zones
6) Groundwater Contamination zones
7) Potential Saltwater Intrusion zones.

The landuse-based criteria were used to account for $A$ ) regional groundwaterquality conditions resulting from non-point source pollution, and B) state regulations concerning landuse near public water-supplies. Buffering of GIS features was used to simulate protective setbacks. Specific groundwater contamination zones were identified and buffered on the basis of data from the Massachusetts Military Reservation, the Massachusetts Bureau of Waste

Cleanup, and the Cape Cod Commission. Wetlands were identified from USGS digital maps, and buffered by 100 feet in accordance with regulations imposed by the Massachusetts Wetland Protection Act. Residential Landuse zones and Business/Utility Landuse zones were buffered by 400 feet in accordance with state laws on siting new public water-supply wells. On the other hand, Restricted Use and Agricultural Landuse zones were excluded from development as public water-supply, but without buffering.

Harris and Steeves allowed for potential saltwater intrusion areas required by using modeled hydraulic head contours, selected on the basis of:

1) Conservative well depth data,
2) An equal depth of vertical buffer to the saltwater interface,
3) The Ghyben-Herzenberg principle, which equates a depth of freshwater below sea-level to the groundwater elevation above sea-level.

Having assembled or created all necessary data, the authors then overlaid the layers in order of increasing limitation on the potential for public water-supply. In the final analysis only $5.6 \%$ of the total land area of Cape Cod remained available for development as a potential public water-supply.

A key weakness of the Harris and Steeves study (USGS, 1994a) in its application to other areas was that the analysis criteria related only to water quality. Water quantity was only considered in a general way as an afterthought by excluding
those areas of the largest flow cell identified as moraine, which typically has low hydraulic conductivity.

A separate GIS-based study relating to the critical nature of existing and future water supplies in New Hampshire was performed by the Society for the Protection of New Hampshire Forests (SPNHF) in 1997. This effort investigated the necessity of a public water-supply land-conservation program for NH (NHDES, 2000). The underpinning of this study was a GIS analysis of the extent and protection for existing critical water-supply lands in the state. To perform this, USGS-delineated sand and gravel aquifers were screened for yield on the basis of transmissivity, and then overlain with source-water protection areas (defined as contributing areas to public water wells, or watershed lands within 4000 feet of a surface water intake). The derived critical-water-supply lands were analyzed for existing levels of water-supply protection on the basis of SPNHF data. The greatest protection was considered to be outright ownership of the land, followed by easements, and then other types of conservation such as private or public natural reserves. Of the critical water-supply lands in NH , only 11.8 percent were found to be protected through ownership or easement (SPNHF, 1998a).

A key component not considered in the SPNHF study was the reduction of watersupply land due to potential and known contamination issues, or due to regulatory requirements. This is important since critical water-supply lands will be scarcer where area is lost to water quality or regulatory constraints.

## Scientific Advancement and Practical Value

This chapter documents the development and application statewide, of a GIS technique to identify remaining undeveloped stratified-drift aquifer areas with potential to serve as large public water-supplies. The work moved beyond Harris and Steeves' (USGS, 1994a) GIS analysis of potential future water supplies in Cape Cod by specifically including consideration for water quantity as a constraint. In addition, the effort required a significantly different approach for water-quality constraints since digital landuse zones are not available in all municipalities in NH. The work also differed from the 1998 SPNHF study by focusing on stratified drift only, and addressing factors that increase the scarcity of the resource such as aquifer areas subject to known or potential contamination, or any lands subject to regulatory requirements. Finally, the work quantified for the first time, the regional status of the New Hampshire's stratifieddrift aquifers, providing a sense of how of these valuable resources are being invisibly fragmented by development, and the need for further conservation efforts.

## Methods

The three specific questions of this research are detailed as follows:

## TCHH2 Question 1

## What is the true frequency of potential and known point source contamination within New Hampshire stratified-drift?

Pilot work performed by the author demonstrated that $54 \%$ of potential and known point-contamination sources lay within stratified-drift aquifer areas. However, this did not account for existing intact underground storage tanks, for local inventories of public water-supply threats generated under the Source Water Protection program, or for duplication in the data (NHDES, 1999a).
$\mathbf{H}_{0}: 65 \%$ of all potential and known point-contamination sources are significantly concentrated on stratified-drift aquifer.

## TCHH2 Question 2

How much of the original USGS-delineated stratified-drift aquifer area in New Hampshire is currently available to serve as large municipal watersupply, after area considerations for water quantity, water quality, and regulatory requirements have been addressed?

The Favorable Gravel Well Analysis (FGWA), a constraints analysis for stratified drift, was developed by the author for the rural town of Henniker, New Hampshire (NHDES, 1999a). This limited pilot work suggested that approximately three
quarters of all stratified drift in the state would be lost if water quantity and quality constraints appropriate to a 75 gpm water-supply well were considered.
$\mathbf{H}_{0}$ : Most municipalities in New Hampshire have $25 \%$ or less of their original stratified-drift aquifer able to be delineated as areas with potential to serve as large public water-supply.

## TCHH2 Question 3

## Where do the greatest opportunities exist for stratified-drift aquifer land conservation?

Figure 5 depicts New Hampshire Original Stratified-Drift Aquifers (OSDA), and 3 sub-regions, overlain with urban features derived from the 2001 satellite-based New Hampshire Landcover Assessment Project. This landcover assessment was performed by the official New Hampshire GIS dataset repository (GRANIT, Geographically Referenced Analysis and Information Transfer system). Generally, the Coast region is known to have smaller, lower yield aquifers, and to be highly populated. The more urban South region has higher yield aquifers than the coast, and a greater population than the North. The rural North region also has higher yield aquifers, about 20\% less land area than the South, and much lower population than either the South or the Coast. The mentioned population trends are readily apparent as urbanization trends in Figure 5.

Table 1 reveals that on the basis of the 2001 New Hampshire Land Cover Assessment, the state is only $4.4 \%$ urbanized, with $1.6 \%$ classed as Residential/Commercial/Industrial, and 2.8\% classed as Transportation.

Table 2 reveals that the South and the Coast regions are 3.7 and 8.6 times as urbanized as the North, respectively. Since humans prefer to develop lowlands and valleys, the greatest opportunities for high-yield aquifer conservation likely exist in the rural North.
$\mathbf{H}_{0}$ : The greatest opportunities for conservation reside in the rural North.

| Landcover Class | $\mathbf{m i}^{\mathbf{2}}$ | \%NH |
| :--- | :---: | :---: |
| Res/Com/Ind | 148.6 | $1.6 \%$ |
| Transportation | 260.9 | $2.8 \%$ |
| Total Urbanized | 409.5 | $4.4 \%$ |

Table 1. Area and percentages of NH area for urban landcover classes derived from the 2001 New Hampshire Landcover Assessment. (GRANIT, 2005)

| Area (mi | ) | Total | North | South |
| :--- | ---: | ---: | ---: | ---: |
| Coast |  |  |  |  |
| Urban | 409.5 | 68.3 | 318.3 | 22.9 |
| Region | 9282.1 | 4046.0 | 5080.5 | 155.6 |
| \%Region | $4.4 \%$ | $1.7 \%$ | $6.3 \%$ | $14.7 \%$ |

Table 2. Regional percentages for urban land cover derived from the satellitebased 2001 New Hampshire Landcover Assessment. (GRANIT, 2005)


Figure 5. Original Stratified-Drift Aquifer (OSDA) in New Hampshire, overlain with urban features derived from the 2000 satellite-based New Hampshire landcover. Three depicted sub-regions are the rural North, more urban South and highly populated Coast. (NH Landcover 2001, GRANIT; USGS, 1996)

## TCHH2 Preparation of Stratified-Drift Aquifer GIS Layer

To answer the research questions, a statewide GIS layer of stratified-drift aquifer was first assembled. Transmissivity data covering thirteen separate study areas from the 1984-96 USGS Stratified-Drift Aquifer Studies in New Hampshire were merged into one polygon feature coverage. Although the 13 study areas did not use identical ranges of transmissivity, the range overlap was such that the dataset could be utilized for the statewide analysis of this study.

Quality-control checks of the USGS and GRANIT stratified-drift coverages corrected a number of errors or inconsistencies, which included:

1) Attribute data where aquifer polygon maximum and minimum transmissivity values did not match associated transmissivity range codes. The attributes were corrected according to the transmissivity classes of nearby polygons.
2) Attribute data where aquifer polygon transmissivity range codes were inconsistent across study areas. For example, the transmissivity range-class-codes of the Nashua Regional Planning Commission (NRPC) study differed completely from those elsewhere in the state. To correct this, a range attribute was created to standardize the transmissivity classes and range codes throughout the 13 study areas.
3) Study area boundaries that were slightly misaligned in space. For example, the Nashua Region Planning Commission had to be spatially adjusted to match political boundaries, and align with neighboring studies.
4) Study area boundaries that overlapped. The Nashua Regional Planning Commission study was based on political boundaries, while all other studies were based on watersheds, or buffered watersheds. As a result, the NRPC, Lower Merrimack, Middle Merrimack and Lamprey studies shared considerable overlap. In this case, the four study areas were adjusted within GIS to eliminate the overlap, with the least transference of transmissivity polygons. The Nashua Regional Planning Commission study (political) boundaries were kept unchanged. The Lower Merrimack western boundary was clipped back to the NRPC boundary. Overlapping areas among the Middle Merrimack, Lamprey and Lower Merrimack studies were corrected by clipping to watershed divides.
5) Inconsistent treatment of surface water features between two study areas. Specifically, the Nashua Regional Planning Commission and Middle Connecticut studies did not clip the area of surface waters from stratified drift deposits, while the 11 remaining studies did so, creating accounting incompatibilities for transmissivity areas. To correct this, surface water polygons were clipped from the transmissivity coverages of the two mentioned studies.

## TCHH2 Question 1 Method

To ascertain the true frequency of groundwater hazards on stratified drift in NH , it was necessary to overlay available federal and state GIS datasets for potential and known contamination sources onto USGS stratified-drift aquifer maps.

## TCHH3 Potential and Known Contamination Sources (PKCS)

Thirteen federal and state GIS databases of potential and known contamination sources for 2003 were acquired for overlay analysis (Table 3). These thirteen databases of 2003 contained 24542 Points and 2209 polygons, for a total of 26751 features. Prior to overlay analysis, the data were scrutinized for duplicate points and polygons.

Two PKCS points were considered duplicates if they had identical coordinates, or if they lay within 1 ft of each other. In cases of duplication, the point contamination-type was assigned to that of greater groundwater hazard. For instance, a fuel tank that was listed both as an Underground Storage Tank (in ust_site), and as a Leaking Underground Storage Tank (in c_site) was identified with the active leaking underground storage tank. PKCS polygons were considered duplicates if they enclosed associated points from PKCS site datasets, or if the polygon was replicated in another dataset. As an example, all Resource Conservation Recovery Act (RCRA) polygons were replicated in the 2003 NHDES Groundwater Contamination Area Database (GIS dataset: c_area).

| Coverage | Description | Source |
| :--- | :--- | :--- |
| 1) ast | Above Ground Storage tank | NHDES |
| 2) c_site | Known/Potential Contamination sites | NHDES |
| 3) junkyd | Junkyard Locations (with at least 50 autos) | NHDES |
| 4) loc_inv | Local Inventory of Groundwater Hazards | NHDES |
| 5) nhtri | Toxic Release Inventory (air, water, land) | USEPA |
| 6) npdes | National Pollution Discharge Elimination System <br> Outfalls | NHDES |
| 7) np_pt | Point/Non-Point Source Pollution sites. | NHDES |
| 8) rcra_site | Hazardous Waste Generators (RCRA) Sites <br> Includes small and large quantity waste <br> generators. | NHDES |
| 9) ust_site | Underground Storage Tanks. | NHDES |
| 10) r_area | Hazardous Waste Generators <br> (RCRA) polygons | NHDES |
| 11) np_poly | Point/Non-Point Source Pollution polygons | NHDES |
| 12) c_area | Known/Potential Contamination polygons | NHDES |
| 13) pest | Pesticide Application Polygons | NH Dept of <br> Agriculture |

Table 3. Thirteen Potential and Known Contamination GIS Datasets for NH.

Finally, sand and gravel mines, and quarries, were removed from the data, since they did not necessarily restrict the development of a public water-supply in the area. While there are some below groundwater-table mines which should be included as constraints in this analysis, the NHDES Point/Non-Point-Source Pollution database does not identify them. After these considerations, 22588 unique points and polygons remained that were both unique and required setbacks under the Favorable Gravel Well Analysis (NHDES, 1999b).

For the contamination overlay-analysis, PKCS points and polygons that fell into the $0-2000 \mathrm{ft}^{2} / \mathrm{d}$ SDA transmissivity range were apportioned to the $0-1000 \mathrm{ft}^{2} / \mathrm{d}$ (86.7\%) and 1000-2000 $\mathrm{ft}^{2} / \mathrm{d}$ (13.3\%) ranges on the basis of PKCS occurrence in these classes for 10 study areas elsewhere in the state. Upon completion of the above preparations, the unique PKCS points and polygons requiring buffers were overlain on the stratified-drift polygon features, and clipped to the SDA extent, within arcGIS (ESRI, 2004). The points were directly summarized by transmissivity range. Where a PKCS polygon overlaid multiple transmissivity ranges, its frequency count was weighted by its sub-area in each transmissivity range (i.e. a contamination polygon could only count for one event, regardless of the number of SDA polygons it intersected). This completed the preparation for question 1.

## TCHH3 Method for Questions 2 and 3

Identification of remaining high-yield stratified drift having potential to serve as large water supplies, and summarizing opportunities for conservation required a technically demanding process within arcGIS due to the regional nature of the study. To perform this, the author refined the original Favorable Gravel Well Analysis (NHDES, 1999b). Aspects of water quantity, NHDES Regulations and water quality were considered, using a vector-based GIS buffering approach within arcGIS. Water-quantity limitations were addressed by masking those areas of the aquifer with insufficient transmissivity to meet the desired pumping rate on the basis of a simple relationship (presented later), and a simplifying assumption of no limiting aquifer boundaries.

While artificial recharge via aquifer storage and recovery systems (ASR) can be important for local water storage in advance of dry seasons, this factor was ignored in this study, given the regional extent of the research, and its focus on immediate yields rather than long term water availability over time. Water-quality limitations were addressed by applying setback-buffers within GIS for urban features, PKCS, and hydrography to NHDES requirements. A more conservative setback was used in cases where the potential for contamination or the hazard to public health was thought to be greater (NHDES, 1999a; NHDES, 1999b).

## TCHH4 Sanitary Protective Radius (SPR) and Water Quality

The regulatory sanitary-protective radius for wellheads provides a link between water quantity and an absolute minimum water-quality protection in this study. NHDES well-siting rules establish an area around the well which must be maintained in a natural state. Unlike the larger wellhead protection area, the SPR is intended only to protect only the water quality in the immediate vicinity ${ }^{2}$ of the well. It is a circle whose radius depends on the well's NHDES-permitted daily production volume (Appendix C).

[^1]Within a Sanitary Protective Radius:
A) The water supplier must own the land, or control the land by perpetual easement.
B) Land uses or activities shall not pose a contamination risk to groundwater. Prohibited uses include septic-system leach fields, roads (except for pump-house access roads), parking lots, driveways, pesticide use, railroad rights-of-way, storage tanks for petroleum or chemicals, any building other than a pump house, detention basins for runoff, dumpsters, and debris.
C) No underground utilities or structures may be installed except for potable water, electrical, and communication conduits.

Consequently, cultural features need to be setback by at least the sanitary protective radius as function of the pumping rate of a given well.

## TCHH4 Water Quantity

To utilize the USGS stratified-drift aquifer data as a rough approximation of water quantity, it was necessary to relate USGS-delineated transmissivity $\left(\mathrm{ft}^{2} / \mathrm{d}\right)$ to well pumping rates (gpm), since NHDES regulations for large overburden wells are based on pumping rates (Appendix C). This was accomplished using a relationship derived from Krasny, (1993):

$$
\begin{aligned}
& \mathrm{Q}= 0.0736\left(\mathrm{gpm} / \mathrm{ft}^{2} / \mathrm{d}\right)^{*} \mathrm{~T} \\
& \text { where } \mathrm{Q}=\text { well yield }(\mathrm{gpm}) \\
& \mathrm{T}=\text { transmissivity }\left(\mathrm{ft}^{2} / \mathrm{d}\right)
\end{aligned}
$$

The 13 USGS studies assigned 17 ranges of minimum and maximum transmissivities as unique attributes for any given digital polygon within the electronic aquifer maps. To be conservative, minimum (rather than maximum) transmissivity values for any given aquifer polygon were used to equate potential well yields. Of the remaining seventeen T-ranges, two key minimum transmissivities (Tmin) were identified:
A) $\operatorname{Tmin}=1000 \mathrm{ft}^{2} / \mathrm{d}$, approximately equal to a well yield of 75 gpm , which for this study, is considered the minimum sufficient to be of interest to municipal planners as a large-capacity water supply (Appendix C). A 75 gpm well yield requires a sanitary protective radius of 300 ft .
B) $\operatorname{Tmin}=2000 \mathrm{ft}^{2} / \mathrm{d}$, approximately equal to a well yield of 150 gpm , which falls into the NHDES maximum sanitary protective radius of 400 ft (Appendix C).

The above two minimum transmissivities bracket the upper and lower setback requirements for the Favorable Gravel Well Analysis (Table 4).

| Favorable Gravel <br> Well Analysis | Well <br> Yield | USGS Minimum <br> Transmissivity | NHDES <br> Sanitary Protective <br> Radius |
| :---: | :---: | :---: | :---: |
| Minimum cultural buffer | 75 gpm | $1000 \mathrm{ft}^{2} / \mathrm{d}$ | 300 ft |
| Maximum cultural buffer | 150 gpm | $2000 \mathrm{ft}^{2} / \mathrm{d}$ | 400 ft |

Table 4. Well yields, transmissivities and sanitary protective radii, defining the upper and lower Favorable Gravel Well Analyses.

For further water-quantity analysis, the 17 USGS stratified-drift transmissivity ranges were assigned FGWA range codes, and then restructured into the 4 mutually exclusive-yield classes of Table 5.

| Yield <br> Class | Yield <br> Range <br> gpm | Description |
| :---: | :---: | :--- |
| C | $<75$ | Unlikely to support a single large municipal well. |
| B | $75-149$ | Potentially able to support moderate to high well yields. |
| $\mathbf{A}$ | $\geq 150$ | Potentially able to support very high well yields. |
| $\mathbf{U}$ | Unknown | The USGS was unable to contour transmissivity for these <br> areas. |

Table 5. Four well-yield classes used to class 17 USGS transmissivity ranges.

Relationships between USGS-delineated transmissivity ranges, FGWA range codes, range area, four yield classes, and two aquifer classifications are outlined in Table 6. Definition of $1000 \mathrm{ft}^{2} / \mathrm{d}$ as a minimum transmissivity of interest creates a problem in three USGS studies, in that the transmissivity range 0-2000 $\mathrm{ft}^{2} / \mathrm{d}$ encompasses that value. Consequently, T sub-areas of $0-1000 \mathrm{ft}^{2} / \mathrm{d}$ and $1000-2000 \mathrm{ft}^{2} / \mathrm{d}$ exist within the $0-2000 \mathrm{ft}^{2} / \mathrm{d}$ range. While these sub-area ranges cannot be identified spatially, their area values can be estimated on the basis of their occurrence in ten other USGS study areas. On this basis, neglecting differences in aquifer morphology, $14.4 \%$ of the $0-2000 \mathrm{ft}^{2} / \mathrm{d}$ range area was apportioned to yield class $B\left(T=1000-2000 \mathrm{ft}^{2} / \mathrm{d}\right)$, while $85.6 \%$ was apportioned to yield class $C\left(T=0-1000 \mathrm{ft}^{2} / \mathrm{d}\right)$. Since the spatial information does not carry through, any 75 gpm constraints analysis map including the three USGS study areas that used this transmissivity range (Nashua Regional Planning

Commission, Pemigewasset, and Bellamy/Cocheco/Salmon Falls) will visually overstate the occurrence of potential 75 gpm aquifer.

The last two columns of Table 6 depict the relationship among several aquifer classes: OSDA (Original Stratified-drift aquifer for the state or a town), OSDA75 (Original Stratified-Drift Aquifer with potential to supply at least a 75 gpm well yield), and OSDA150 (Original Stratified-Drift Aquifer with potential to supply at least a 150 gpm well yield). For these last two categories of SDA, the Unknown yield class was apportioned to classes A, B and C (13.6\%, 12.4\%, and 74\% respectively); on the basis of state ratios of these three yield classes.

| $\begin{aligned} & \hline \text { USGS } \\ & \text { SDA } \\ & \text { Polygon } \\ & \text { Tmin } \\ & \left(\mathrm{ft}^{2} / \mathrm{d}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { USGS } \\ & \text { SDA } \\ & \text { Polygon } \\ & \text { Tmax } \\ & \left(\mathrm{ft}^{2} / \mathrm{d}\right) \\ & \hline \end{aligned}$ | FGWA Range Code | FGWA Range Area (mi ${ }^{2}$ ) | $\begin{aligned} & \text { SDA } \\ & \text { \%NH } \\ & \text { Area } \end{aligned}$ | Well Potential Yield Class (Mutually Exclusive) | Yield <br> Class <br> Area <br> ( $\mathrm{mi}^{2}$ ) | Yield <br> Class <br> \%NH <br> Area | $\begin{aligned} & \text { OSDA and } \\ & \text { OSDA75 } \\ & \text { Subset } \\ & \hline \end{aligned}$ | OSDA and OSDA150 Subset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 0 500 | 500 1000 1000 | 2 3 4 | $\begin{array}{r}49.1 \\ 59.3 \\ 5.0 \\ \hline\end{array}$ | 0.5 6.2 0.1 | $\mathrm{C}_{\text {(<75 gpm) }}$ | 821.9 | 8.9 | Insufficient Yield | Insufficient Yield |
| 0 | 2000 | 5 | 220.2 | 2.4 |  |  |  |  |  |
| 1000 | 2000 | 6 | 106.4 | 1.1 |  | 138.1 | 1.5 |  |  |
| 2000 | 3000 | 7 | 7.0 | 0.1 | A (150+ ${ }^{\text {gpm }}$ ) | 150.5 | 1.6 |  | $\begin{aligned} & \text { OSDA150 } \\ & =\mathrm{A} \\ & +13.6 \% \mathrm{U} \\ & =1.8 \% \mathrm{NH} \end{aligned}$ |
| 2000 | 4000 | 8 | 81.1 | 0.9 |  |  |  | $\begin{aligned} & \text { OSDA75 } \\ & =A+B \\ & +26.0 \% \mathrm{U} \\ & =3.5 \% \mathrm{NH} \end{aligned}$ |  |
| 3000 | 4000 | 9 | 3.0 | 0.0 |  |  |  |  |  |
| 3000 | 99999 | 10 | 0.2 | 0.0 |  |  |  |  |  |
| 4000 | 6000 | 11 | 0.1 | 0.0 |  |  |  |  |  |
| 4000 | 8000 | 12 | 31.8 | 0.3 |  |  |  | Requires 300 ft SPR |  |
| 4000 | 99999 | 13 | 9.8 | 0.1 |  |  |  |  | Requires 400 ft SPR |
| 6000 | 99999 | 14 | 0.02 | 0.0 |  |  |  |  |  |
| 8000 | 99999 | 15 | 17.5 | 0.2 |  |  |  |  |  |
| 99999 | 99999 | 97 | 18.5 | 0.2 | $\bigcup_{\text {(Unknown gpm) }}$ | 134.5 | 1.4 | Apportioned | Apportioned |
| 99999 | 99999 | 98 | 10.4 | 0.1 |  |  |  |  |  |
| 99999 | 99999 | 99 | 105.6 | 1.1 |  |  |  |  |  |
| SDA Total |  |  | 1245.0 | 13.4 | Yield Class Total | 1245.0 | 13.4 |  |  |
| NH Total |  |  | 9282.1 | 100.0 | NH Total | 9282.1 | 100.0 |  |  |

Table 6. Aquifer transmissivity ranges, FGWA range codes, range areas, yield classes and Original Stratified-Drift Aquifer subsets. The USGS transmissivity ranges have considerable overlap since the ranges varied by study area.
Consequently, range $5\left(0-2000 \mathrm{ft}^{2} / \mathrm{d}\right)$ and yield class $U$ were each apportioned as indicated on the basis of occurrence elsewhere in the state. OSDA75 is a subset of original stratified-drift aquifer (OSDA) that has potential to meet a 75 gpm or greater well yield. OSDA150 is a subset of OSDA75 that has potential to meet a 150 gpm or greater well yield.

## TCHH4 Water Quality (Contamination, Hydrography) TCHH5 Roads

Maintained public and private roads were buffered by the sanitary protective radius plus one-half the approximate right-of-way, based on road class. Discussions with the New Hampshire Department of Transportation indicated that the right-of-way can range from 50 feet for the smallest back-road to 150 feet for a super-highway. Seventy-five to 100 feet is considered common. Actual right-of-way values are site specific, and are not available as attributes in DOT or USGS road coverages (C. Brown, NHDOT, personal communication, 1996).

Public and private road coverages were obtained from the New Hampshire Department of Transportation (NHDOT). The private roads coverage had been developed under the Office of Emergency Management 911 Project. These coverages were reviewed for spatial overlap, GIS attributes, and obvious data errors. The coverages were then unioned into a single roads layer for the state, resulting in a considerably more detailed dataset than that of the pilot study. SPR buffers were assigned to maintained roads only, on the basis of the attribute functional class codes (F_class, Table 7). Final quality checks of the dataset, and buffering were subsequently performed in arcGIS.

| F_Class |  |  |  |
| :---: | :--- | :--- | :--- |
| F_ype | Description | Net <br> Buffer |  |
| 0 | Either | Non-Public and Private Roads | SPR+25 |
| 1 | Rural | Principal Arterial - Interstate | SPR+75 |
| 2 | Rural | Principal Arterial - Other | SPR+50 |
| 6 | Rural | Minor Arterial | SPR+37.5 |
| 7 | Rural | Major Collector | SPR+37.5 |
| 8 | Rural | Minor Collector | SPR+25 |
| 9 | Rural | Local | SPR+25 |
| 11 | Urban | Principal Arterial - Interstate | SPR+75 |
| 12 | Urban | Principal Arterial -- Other | SPR+50 |
| 14 | Urban | Principal Arterial - Other | SPR+37.5 |
| 16 | Urban | Minor Arterial | SPR+37.5 |
| 17 | Urban | Collector | SPR+25 |
| 19 | Urban | Local | SPR+25 |

Table 7. Buffers (SPR+1/2 right-of-way) for maintained public and private roads.

## TCHH5 Potential and Known Contamination Sources

In Harris and Steeve's approach (USGS, 1994a), digital landuse zones were utilized as a means to infer underlying water quality. For the current study, 13 datasets representing potential and known groundwater contamination sources (PKCS) were obtained from NHDES and GRANIT (Appendices D and E). Potential sources include features (such as an intact underground storage tanks) that are listed with NHDES as potential groundwater hazards, without having active contamination. This includes remediated groundwater hazards. Known sources include features (such as leaking underground storage tanks) that are listed with NHDES as active ground water hazards, having known contamination currently being addressed.

The acquired datasets encompass both point and polygon GIS features, which had been scrutinized for duplication. Appropriate subsets of the datasets were
buffered to remove areas from consideration as possible water-supply due to potential water-quality issues.

Two distinct buffers for these features were utilized on the basis of relative hazard: the sanitary protective radius or 1000 feet for features thought to be of greater hazard to the public (e.g. septage lagoons). Specific FGWA buffers for known contamination sources are identified in Appendix D. Specific FGWA buffers for potential contamination sources are identified in Appendix E.

Depending on well pumping rate, subsurface circumstances, contaminant properties and whether the nearby contamination is a point source or a plume, a 1000 foot setback can be an over-protective or under-protective for a large watersupply well. Review of NHDES contamination sites and discussions with five NHDES project managers revealed that most contamination plumes in NH SDA are much less than 1000 ft (Regan et al., personal communication, 1996). Consequently, 1000 ft was chosen as a compromise buffer between an adequate protection and a more conservative setback that would have constrained considerable excess land (NHDES 1999a, NHDES 1999b).

## TCHH5 Hydrography

In addition to the prior water-quality considerations, there is an NHDES requirement that large overburden wells must be setback at least 50 feet from any surface water, including or wetlands as a means to control possible biologic and chemical contamination (NHDES, 1995, NHDES, 2007). In this study,
wetlands received separate consideration from other surface waters, on the basis of a NHDES policy that resulted from the pilot project. Wetlands are extensive in New Hampshire, and public water-supplies can be developed on such features, provided the land is built up to avoid potential surface-water contamination of the wells , and appropriate NHDES permits are obtained for disturbance of the wetland. Consequently, while Harris and Steeves removed wetlands from consideration, for the purposes of this study wetlands were retained as viable locations of water supply in the FGW analysis.

To satisfy the surface water setback requirement, 1:24000 USGS Hydrography Digital Line Graphs (DLG) for New Hampshire were obtained. Quality checking of this data revealed several attribute coding errors at the northern end of the state. In addition, a large number of wetland boundaries in the central part of the state were found to be incorrectly coded, creating problems for buffering. After corrections, final buffering was performed in arcGIS.

## TCHH4 Spatial Overlay

Once all cultural features, hydrography and PKCS coverages had been assembled and buffered appropriately for both 75 gpm and $150+\mathrm{gpm}$ analyses, they were overlain within arcGIS onto the USGS SDA coverages. To provide information by town, political boundaries for the state were overlain as well. Quality control checks were performed after each step. These included monitoring the number of polygons resulting from the overlay process, updating the polygon areas, ensuring that the area sum of all stratified drift had not
changed, and performing visual checks in a number of locations throughout the state to identify possible problems.

The final 75 and 150 gpm studies then consisted of 232,729 and 253,072 polygons, respectively. These statewide coverages were then analyzed for remaining areas of stratified-drift aquifer by town, and for opportunities for conservation. The final FGWA attribute data were imported to MS Access for cross-tabulation of remaining stratified drift by transmissivity range and town. These cross-tabulations were subsequently reworked within Microsoft Excel to apportion FGWA range code $5\left(T=0-2000 \mathrm{ft}^{2} / \mathrm{d}\right)$ between range codes 4 and 6 ( $T=0-1000 \mathrm{ft}^{2} / \mathrm{d}, \mathrm{T}=1000-2000 \mathrm{ft}^{2} / \mathrm{d}$ ); and to apportion the unknown yield class $U(T=99999)$ between yield classes $A, B$ and $C$. This allowed reasonable estimation of RSDA75 and RSDA150 by state, region and town.

## Results

## Question 1

## What is the true frequency of potential and known point-source contamination within New Hampshire stratified drift?

Table 8 displays the results of the overlay analyses of all PKCS points, including intact underground storage tanks, the NHDES local source water protection hazard inventory, and after elimination of duplication among datasets. From this table it can be seen that the greatest frequency of PKCS counts on SDA stemmed from the active sites of the NHDES Groundwater Contamination Database, followed by RCRA sites, intact underground storage tanks and local source-water protection inventory points. 13030 points and polygons, or 57.7\% of all unique PKCS occurrences of interest reside on stratified drift. While this frequency of potential and known contamination sites on SDA is larger than observed in the pilot study, it is less than the hypothesized value of $65 \%$. As a result, $\boldsymbol{H}_{0}$ is rejected.

Table 9 summarizes the occurrence of the PKCS counts by well-yield classes, and reveals further details on the threat of urban development. SDA in general, has a PKCS density per $\mathrm{mi}^{2}$ approximately 8.3 times that of the upland areas of the state on average. Yield class A (150+ gpm) has the greatest PKCS density

| Potential and Known Contamination Sources | Coverage | Feature Class | PKCS Type | *****************Features************** |  |  |  | Percent Unique Buffered Features on SDA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Above Ground Fuel Storage Tank | Ast_site | Point | 1 | 1151 | 1008 | 1008 | 579 | 2.6\% |
| NHDES Groundwater Remedation | C_site | Point | 2 | 6931 | 6850 | 6850 | 3898 | 17.3\% |
| Junkyard of at least 50 autos | Junkyd | Point | 3 | 162 | 162 | 162 | 82 | 0.4\% |
| Source Water Local Hazard Inventory | Localinv | Point | 4 | 1983 | 1977 | 1977 | 1118 | 4.9\% |
| Toxic Release Inventory | Nhtri | Point | 5 | 222 | 214 | 214 | 121 | 0.5\% |
| National Point Discharge | Npdes | Point | 6 | 410 | 406 | 406 | 187 | 0.8\% |
| Non-Point Source Pollution | Np_pt | Point | 7 | 2219 | 2218 | 1332 | 749 | 3.3\% |
| Resource Conservation Recovery Act | Rcra_site | Point | 8 | 6803 | 5568 | 5568 | 3497 | 15.5\% |
| Underground Fuel Storage Tank | Ust_site | Point | 9 | 4661 | 3231 | 3231 | 2049 | 9.1\% |
| Resource Conservation Recovery Act | Rcra_area | Polygon | 10 | 18 | 0 | 0 | 0 | 0.0\% |
| Non-Point Source Pollution | Np_poly | Polygon | 11 | 345 | 332 | 41 | 19 | 0.1\% |
| NHDES Groundwater Remedation | C_area | Polygon | 12 | 571 | 524 | 524 | 316 | 1.4\% |
| Pesticide Application | Pest | Polygon | 13 | 1275 | 1275 | 1275 | 415 | 1.8\% |
|  |  |  |  | 26751 | 23765 | 22588 | 13030 | 57.7\% |

Table 8. Potential and Known Contamination Sources (PKCS) in New Hampshire by Stratified-Drift Yield Class, with redundancy eliminated. Frequency of PKCS occurrence on SDA as a percent of all PKCS is in gray.


Table 9. Potential and Known Contamination Sources in New Hampshire as distributed across stratified-drift yield classes. PKCS points and polygons that fell into the $0-2000 \mathrm{ft}^{2} / \mathrm{d}$ SDA transmissivity range were apportioned to the $<75$ ( $86.7 \%$ ) and 75-150 (13.3\%) yield classes on the basis of PKCS occurrence in these classes, elsewhere in the state. SDA has a PKCS density on average 8.3 times greater than that of upland areas. The $150+$ gpm yield class has PKCS density 11.3 times that of upland areas.
of all, 13.5 occurrences per $\mathrm{mi}^{2}$ on average, 11.3 times greater than upland areas of the state. Unfortunately, yield class A stratified drift is the most vulnerable to the spread of contamination as it is the most transmissive.

As mentioned earlier, $57.7 \%$ of all PKCS in New Hampshire occur on SDA, which occupies just $13.4 \%$ of the state's area. For comparison, after apportionment from yield class U, yield classes A and B occupy just 1.8\% and 1.7\% of the state's area.

## Question 2

How much of the original USGS-delineated stratified-drift aquifer area in New Hampshire is currently available to serve as large municipal watersupply, after considerations for water quantity and water quality have been addressed?

In the following discussion, all SDA quantities include apportioned yield class $U$. Table 10 and Table 11 reveal that of the $1245 \mathrm{mi}^{2}$ of OSDA in NH, on average, only $9.5 \%\left(118.4 \mathrm{mi}^{2}\right)$ remains with potential to serve a 75 gpm well after FGW analysis. Furthermore, only $3.8 \%\left(47.6 \mathrm{mi}^{2}\right)$ remains with potential to serve as a 150 (or greater) gpm well, after FGW analysis. Since these numbers are far less than $25 \%$, the null hypothesis is accepted.

Table 10 and Table 11 also reveal that a far greater amount of OSDA is lost to water quantity considerations than to water quality considerations. $74.0 \%$ and
86.4\% of all NH OSDA is removed to create OSDA75 and OSDA150
respectively. From these, an additional $16.5 \%$ and $9.7 \%$ is removed to create RSDA75 and RSDA150 respectively.

| New Hampshire FGW Analysis (mi') |  |  |  |
| :---: | :---: | :---: | :---: |
| Description | 75 gpm | 150 gpm | Description |
| OSDA | 1245.0 | 1245.0 |  |
| Less Insufficient Water Quantity | 921.4 | 1076.3 |  |
| OSDA75 | 323.6 | 168.7 | OSDA150 |
| Less Buffers for Water Quality | 205.2 | 121.1 |  |
| RSDA75 | 118.4 | 47.6 | RSDA150 |

Table 10. Areal summaries of 75 gpm and 150 gpm lands from the Favorable Gravel Well Analyses for NH.

| FGW Analysis as Percent NH OSDA |  |  |  |
| :---: | :---: | :---: | :---: |
| Description | 75 gpm | 150 gpm | Description |
| OSDA | 100.0\% | 100.0\% |  |
| Less Insufficient |  |  |  |
| Water Quantity | 74.0\% | 86.4\% |  |
| OSDA75 | 26.0\% | 13.5\% | OSDA150 |
| Less Buffers |  |  |  |
| for Water Quality | 16.5\% | 9.7\% |  |
| RSDA75 | 9.5\% | 3.8\% | RSDA150 |

Table 11. Percentage summaries of 75 gpm and 150 gpm from the Favorable Gravel Well Analyses for NH.

Figure 6 on the following page, depicts histograms of OSDA, RSDA75 and RSDA150 areas. As noted in SPNHF, 1998a, the amount of original stratified drift varies greatly among New Hampshire's towns. In Figure 6, this variability is demonstrated in the broad distribution of original aquifer area by town. Eleven NH towns have no OSDA, 30 towns have no remaining stratified-drift aquifer available for a 75 gpm well (RSDA75) after a constraints analysis. Fully 68 towns have no remaining stratified-drift aquifer available for a 150 gpm well (RSDA150) after the constraints analysis.

As indicated by the cumulative curves in Figure 6, the broad distribution of municipalities by OSDA area is significantly pushed to the left after both the RSDA75 and RSDA150 constraints analyses. This is largely driven by the $74 \%$ and $86.4 \%$ loss of aquifer area due to insufficient water quantity for single large wells (Table 11). Consequently, the RSDA75 and RSDA150 distributions take on the character of the OSDA75 and OSDA150 frequency distributions.

Figure 7 and Figure 8 depict the further loss and fragmentation of OSDA75 and OSDA150 due to setbacks applied for water quality factors. In both cases, large areas of the OSDA75 or OSDA150 exist in a relatively few towns, before the Favorable Gravel Well Analysis. After the analysis, both the RSDA75 and RSDA150 distributions have been skewed to the left by fragmentation. In both analyses, the majority of towns have very little aquifer remaining available.


Figure 6. Histograms for original stratified-drift aquifer and remnant stratified-drift aquifer areas after Favorable Gravel Well Analyses for 75 and 150 gpm well yields. Of $1245 \mathrm{mi}^{2}$ OSDA, after water quantity and water quality considerations, RSDA75 contains $118.4 \mathrm{mi}^{2}$ ( $9.5 \%$ ) and RSDA150 contains $47.6 \mathrm{mi}^{2}$ (3.7\%). (To assist in interpretation, the acronym definitions are listed again below.)

OSDA The area of Original Stratified-Drift Aquifer, as delineated by the USGS, for a region such as a town or state.

RSDA75 A subset of OSDA with potential to supply a 75 gpm well yield, after both water quantity and water quality considerations. It is a subset of OSDA75.

RSDA150 A subset of OSDA with potential to supply a 150 gpm well yield, after both water quantity and water quality considerations. It is a subset of OSDA150.


Figure 7. Histogram of OSDA75/RSDA75 area by towns. Consideration of water quality setbacks creates fragmentation of aquifer area that drives the RSDA75 distribution left. (Acronym definitions are listed again below.)

OSDA The area of Original Stratified-Drift Aquifer, as delineated by the USGS, for a region such as a town or state.

OSDA75 A subset of OSDA with potential to supply at least a 75 gpm well yield, after water quantity considerations.

RSDA75 A subset of OSDA with potential to supply at least a 75 gpm well yield, after both water quantity and water quality considerations. It is a subset of OSDA75.


Figure 8. Histogram of OSDA150 and RSDA150 area by towns. Consideration of water quality setbacks further fragments aquifer area, driving the RSDA75 distribution left. (Acronym definitions are listed again below.

OSDA The area of Original Stratified-Drift Aquifer, as delineated by the USGS, for a region such as a town or state.

OSDA150 A subset of OSDA with potential to supply at least a 150 gpm well yield, before water quality considerations. It is also a subset of OSDA75.

RSDA150 A subset of OSDA with potential to supply at least 150 gpm well yield, after both water quantity and water quality considerations. It is a subset of OSDA150.

## Question 3

## Where do the greatest opportunities exist for stratified-drift aquifer land conservation?

To answer this, OSDA, RSDA75 and RSDA150 data were summarized according to the three regions of Figure 5, as determined below:
A) Rural North, with a greater frequency of narrow, high transmissivity valley aquifers
B) More populated South with a mix of narrow valley aquifers and broad sand plains, including the cities of Nashua, Manchester and Concord;
C) Highly populated Coast, with smaller, lower yielding aquifers.

Table 12 reveals that the greatest opportunities for conservation $\left(61.9 \mathrm{mi}^{2}\right.$ RSDA 75 and $27.5 \mathrm{mi}^{2}$ RSDA150) exist in the North. On this basis, the null hypothesis is accepted.

The comparisons of Table 13 reveal that the South has $65.7 \%$ of NH OSDA,; the North; 32.0\%; and the Coast only 2.3\%. Subtraction of low-transmissivity areas casues the Coast to lose the most, followed by the South, and finally by the North. Of each region's resulting OSDA75 or OSDA150, the highly populated Coast loses $83.8 \%$ and $90.8 \%$ to water quality setbacks, followed by the more urban South (69.9\%, 784\%), while the rural North loses the least (53.8\%, 63.2\%). As a result, the Coast is left with little RSDA75/150, and the North, despite 51.4\% less OSDAh, is left with slightly more RSDA75 and RSDA150 than the South.

| 75 GPM FGW Analysis <br> Estimated (mi2) |  |  |  |  |  | 150 GPM FGW Analysis <br> Estimated (mi2) |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type | Total | Coast | South | North | Coast | South | North | Total | Type |
| All Land | 9282.1 | 156 | 5080 | 4046 | 156 | 5080 | 4046 | 9282 | All Land |
| OSDA | 1245.0 | 28.7 | 818.3 | 397.9 | 28.7 | 818.3 | 397.9 | 1245.0 | OSDA |
| - Quantity | 921.4 | 24.3 | 633.3 | 263.8 | 27.5 | 725.6 | 323.2 | 1076.3 | - Quantity |
| OSDA75 | 323.6 | 4.4 | 185.0 | 134.1 | 1.3 | 92.7 | 74.8 | 168.7 | OSDA150 |
| - Quality | 205.2 | 3.7 | 129.2 | 72.2 | 1.2 | 72.7 | 47.3 | 121.1 | - Quality |
| RSDA75 | 118.4 | 0.7 | 55.8 | 61.9 | 0.1 | 20.0 | 27.5 | 47.6 | RSDA150 |

Table 12. Regional area summaries of the 75 gpm FGW analysis and the 150 gpm FGW analysis. To assist the reader, acronym definitions are relisted below.

| 75 GPM FGW Analysis <br> Regional Comparisions |  |  |  |  | 150 GPM FGW Analysis Regional Comparisions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | NH \| | Coast | South | North | Coast | South | North | \| NH | Type |
| \%NH OSDA | 100 | 2.3 | 65.7 | 32.0 | 2.3 | 65.7 | 32.0 | \| 100 | \%NH OSDA |
| A \%Reg OSDA Lost to Quantity | 74.0\| | 84.7 | 77.4 | 66.3 | 95.5 | 88.7 | 81.2 | [ 86.4 | A \%Reg OSDA Lost to Quantity |
| B \%OSDA75 <br> Lost to Quality | 63.4I | 83.8 | 69.9 | 53.8 | 90.8 | 78.4 | 63.2 | 171.8 | $\begin{array}{\|l} \hline \text { B \%OSDA150 } \\ \text { Lost to Quality } \end{array}$ |
| $\begin{array}{\|c\|} \hline \text { C RSDA75 } \\ \text { \%NH OSDA } \\ \hline \end{array}$ | 9.5 I | 0.1 | 4.5 | 5.0 | 0.0 | 1.6 | 2.2 | \| 3.8 | $\begin{gathered} \hline \text { C RSDA150 } \\ \text { \%NH OSDA } \end{gathered}$ |

Table 13. Regional comparisons for the 75 gpm and 150 gpm FGW analyses:
A) \%OSDA lost to water quantity, B) \% of OSDA75 or OSDA150 lost to water quality, and C) RSDA75 or RSDA150 as \% of the state's $1245 \mathrm{mi}^{2}$ of OSDA.

OSDA All Original Stratified-Drift Aquifer, as delineated by the USGS, for a region such as a town or state.

OSDA75 A subset of OSDA with potential to supply a 75 gpm well yield, after water quantity considerations.

RSDA75 A subset of OSDA with potential to supply a 75 gpm well yield, after both water quantity and water quality considerations. It is a subset of OSDA75.

OSDA150 A subset of OSDA with potential to supply a 150 gpm well yield, after water quantity considerations. It is also a subset of OSDA75.

RSDA150 A subset of OSDA with potential to supply a 150 gpm well yield, after both water quantity and water quality considerations. It is a subset of OSDA150.


Figure 9. Histogram of remaining stratified-drift aquifer with potential to provide a well yield of 75 gpm or greater, in 259 New Hampshire towns.

| RSDA75 |  |  | RSDA75 | RSDA75 |
| :---: | :---: | :---: | :---: | :---: |
| Range ( $\mathrm{mi}^{2}$ ) | Towns | \% Towns | mi ${ }^{2}$ | \%Total |
| 0 | 30 | 11.6\% | 0.0 | 0.0\% |
| >0-0.001 | 5 | 1.9\% | 2.2E-03 | 0.0\% |
| $>0.001-0.5$ | 161 | 62.2\% | 27.3 | 23.0\% |
| >0.5-1.5 | 48 | 18.5\% | 45.4 | 38.3\% |
| >1.5-4+ | 15 | 5.8\% | 45.8 | 38.7\% |
| Total | 259 | 100.0\% | 118.4 | 100.0\% |

Table 14. Frequency and area of remaining stratified-drift aquifer having potential for a well yield of 75 gpm or greater, for 259 NH towns.

Of New Hampshire's $1245 \mathrm{mi}^{2}$ of stratified drift, only $118.4 \mathrm{mi}^{2}$ remains available after constraints analysis for a 75 gpm or greater well yield. Figure 9 and Table 14 demonstrate that the majority (77\%) of this amount resides in just 63 (24.3\%) of 259 towns. Just 15 (5.8\%) towns encompass 38.7\% of the RSDA75.


Figure 10. Histogram of remaining area of stratified-drift aquifer with potential to provide a well yield of 150 gpm or greater, in 259 New Hampshire municipalities.

| RSDA150 |  |  | RSDA150 | RSDA150 |
| :---: | ---: | ---: | ---: | ---: |
| Range $\mathbf{( m i}^{\mathbf{2}}$ ) | Towns | \% Towns | $\mathbf{m i}^{\mathbf{2}}$ | \%Total |
| 0 | 68 | $26.3 \%$ | 0.0 | $0.0 \%$ |
| $>0-0.001$ | 12 | $4.6 \%$ | $3.0 \mathrm{E}-03$ | $0.0 \%$ |
| $>0.001-0.5$ | 151 | $58.3 \%$ | 16.3 | $34.2 \%$ |
| $>0.5-1.5$ | 22 | $8.5 \%$ | 17.3 | $36.4 \%$ |
| $>1.5-4+$ | 6 | $2.3 \%$ | 14.0 | $29.5 \%$ |
| Total | 259 | $100.0 \%$ | 47.6 | $100.0 \%$ |

Table 15. Tabulated frequency and area of remaining stratified-drift aquifer with potential for a well yield of 150 gpm or greater, for 259 NH towns.

Figure 10 and Table 15 reveal that of NH's $1245 \mathrm{mi}^{2}$ of OSDA, only $47.6 \mathrm{mi}^{2}$ remains available for a 150 gpm well yield or greater. Just 28 (10.8\%) of 259 towns hold $65.9 \%$ of this area. Just 6 (2.3\%) towns encompass $29.5 \%$ of NH RSDA150. Most NH towns retain less than $0.5 \mathrm{mi}^{2}$ of RSDA150.

Figure 11 and Figure 12 depict the RSDA75 and RSDA150 distributions by area by town. In both images, it is clear that the Nashua Region, the Saco River Region, and Pittsburg (the northernmost town) have the most remaining stratified drift after the FGW analyses. It should be noted that Pittsburg's OSDA was for the most part, classed as having Unknown Transmissivity. Therefore, Pittsburg's high RSDA75 and RSDA150 quantities are estimates based on yield class occurrence in the rest of the state.

Figure 13 and Figure 14 depict the RSDA75 and RSDA150 distributions in NH, which can be compared with Figure 5. Note that in Figure 13, the RSDA75 distribution is visually overstated, since $A$ ) it comprises at most $14.4 \%$ of the $T=0$ $2000 \mathrm{ft}^{2} / \mathrm{d}$ class (i.e. the portion belonging to the non-delineated $\mathrm{T}=1000-2000$ $\mathrm{ft}^{2} /$ d sub-region), and B) it integrates, at most, only $26 \%$ of $T=$ Unknown. Similarly, in Figure 14, the RSDA150 distribution is visually overstated since it only incorporates at most only $13.6 \%$ of the class, $T=$ Unknown.


Figure 11. Area of RSDA75 by town. Pittsburg, the northernmost town, contains a large area of the Unknown yield class, which raising its RSDA75 by apportionment. (NHDES, 2003; USGS 1995; GRANIT, 2004)


Figure 12. Area of RSDA150. Pittsburg, the northernmost town, contains a large area of the Unknown yield class, which raises its RSDA150 area, by apportionment. (NHDES, 2003; USGS 1995; GRANIT, 2004)


Figure 13. RSDA75 in New Hampshire. Areas in gray (Transmissivity $=0-2000$ $\mathrm{ft}^{2} / \mathrm{d}$ and Transmissivity = Unknown) visually overstate RSDA75 by $114.1 \mathrm{mi}^{2}$ (96.4\%), although the statistical analysis is accurate.


Figure 14. RSDA150 in New Hampshire. Areas in black (Transmissivity = Unknown) visually overstate RSDA150 by $57.1 \mathrm{mi}^{2}$ (120.4\%).

## Chapter I Conclusion

High yield stratified-drift aquifer is a valuable resource in New Hampshire in that it can supply quantities of readily potable water sufficient to be of interest to municipalities. This study focused on preliminary identification of stratified-drift aquifer areas with potential to serve as single, large water-supply wells. Such wells are far more productive than most bedrock wells, usually require less initial capital investment, and have lower operating costs than an equivalent set of smaller wells in lower-yield stratified drift.

In this research, the occurrence of potential and known contamination sites on stratified-drift aquifer was determined to be $57.7 \%$, slightly higher than earlier estimates, but not as high as the hypothesized value. The elimination of duplication in the PKCS data counteracted increases due to the inclusion of intact underground storage tanks and the local source-water hazard inventory in the analysis. However, this research also determined that stratified drift in general, has a density of potential and known contamination sites on average 8.3 times that of upland areas. Furthermore, the highest yielding stratified-drift resources were found to have a density of potential and known contamination sites on average 11.3 times that of upland areas. This clearly demonstrates that stratified-drift water-resources are threatened by development, and the highest yielding stratified-drift areas are particularly threatened.

This research refined a GIS-based method for preliminary identification of higher
yield stratified-drift areas likely to remain available after considerations for water quality and water quantity. The tool was applied on a statewide basis to summarize regional variation of these areas. After considerations for water quantity and water quality, only $9.5 \%$ and $3.8 \%$ of New Hampshire's $1245 \mathrm{mi}^{2}$ of stratified drift remained with potential to support a $75+\mathrm{gpm}$ well or a $150+\mathrm{gpm}$ well, respectively. This demonstrates unequivocally that stratified drift aquifers, the most productive water resources after surface water, are far more limited in New Hampshire than previously understood.

This limitation is more due to water quantity than water quality criteria. In the 75 gpm and 150 gpm Favorable Gravel Well Analyses, $77 \%$ to $87 \%$ of the total aquifer area was removed respectively for water quantity considerations.

Frequency analysis reveals that most towns have less than $0.5 \mathrm{mi}^{2}$ of either RSDA75 or RSDA150. In both cases, a relatively few towns have most of the remaining aquifer resources. This further emphasizes that remaining available high-yield areas are scarce.

From a state perspective, the greatest opportunities for conservation exist in towns with greater remaining SDA areas. From a regional perspective, the highly populated Coast has almost no higher yield stratified drift remaining available. The more urban South ( $20 \%$ larger and with twice as much OSDA as the North) has slightly less RSDA75 (55.7 mi ${ }^{2}$ ) and RSDA150 (20.0 mi ${ }^{2}$ ) respectively than
the rural North $\left(61.9 \mathrm{mi}^{2}\right.$ and $\left.27.3 \mathrm{mi}^{2}\right)$. Consequently, opportunities for conservation exist in both the North and South, but the opportunities are somewhat greater in the rural North. On the other hand, the need for conservation may be greater in the South, and greatest in the more populated, coast which is relatively poor in high-yield aquifers.

In conclusion, higher-yield stratified drift, unaffected by contamination or other constraints, is far less available in NH than commonly thought, and needs to be conserved to the greatest degree possible in the present, given the growing water national water crisis. Given the scarcity of higher yield RSDA, the likelihood of increased population growth, and the potential for climate change in this century, the author recommends the following:

## 1) Further delineation of the SDA yield class $C$

Aquifer yield-class C (yield < 75 gpm ) encompasses three-quarters of all stratified drift. Identification of aquifer areas able to support $19-75 \mathrm{gpm}$ wells would allow towns the possibility of greater aquifer conservation. Preliminary regression of the author suggest that $174 \mathrm{mi}^{2}$ (14\%) NH resides in the $19-37$ gpm yield category, and an additional 14\%NH OSDA resides in 37-75 gpm yield category. Such sub-areas are especially critical for towns with little or no RSDA75. A caveat, however, is that such areas may be more susceptible to drought.

## 2) Further Delineation of the SDA Yield Class U

Aquifer-yield class U encompasses about $11 \%$ of NH SDA. Given the scarcity of RSDA, NH as a state, could benefit from the delineation of transmissivity in rural areas where it has yet to be done. Conservation opportunities can be enhanced in rural areas, where water demand is lower and water quality issues can be fewer or more restricted in area.

## 3) Systemic Identification of NH SDA Resilience to Drought

 Identification of areas of fractured bedrock aquifer and stratified-drift aquifer that can be expected to have greater resilience to drought due to aquifer characteristics such as large contributing area, aquifer interconnectivity, relatively low anthropogenic demand, or historical low flows. This should be done systemically, and should include consideration of the influence of major water users on the statewide aquifer system.
## 4) Update the Source Water Assessment Protection Index

The Source Water Protection Program's assessments could be updated to identify water supplies that may have a greater susceptibility to contamination as zones of contribution expand during drought.

## 5) Increased Conservation Efforts

With the relative scarcity of RSDA75/RSDA150 quantified, the state might consider how to further encourage towns to conserve such areas. Towns with limited RSDA75/RSDA150 have an immediate need for conservation, while towns with larger amounts of RSDA75/RSDA150 have the greatest opportunities for longer term conservation.

## CHAPTER II

# PROJECTION OF HIGH YIELD STRATIFIED-DRIFT AQUIFER LOSSES IN NEW HAMPSHIRE TO 2025 

## Introduction

## TCHH2 Value and Status of High Yield Stratified-Drift Aquifer

As discussed in the dissertation Introduction, water-supply wells located in stratified-drift aquifers are the most productive of groundwater resources. Their average yields far exceed those of public water-supply wells located in bedrock (USGS, 1995), and consequently, they serve large populations of people. However, these key water resources are very limited in area, and are increasingly constrained in New Hampshire due to mining for construction purposes, human development spreading across them, and their vulnerability to contamination.

The research of Chapter I revealed that as of $2000,63.4 \%$ of high yield stratifieddrift aquifers with potential for a 75 gpm or greater well yield had been lost to setbacks, primarily from features related to human development. Furthermore, development pressure on New Hampshire's stratified-drift aquifers is likely to continue over the following 20 years since:

- New Hampshire's population was estimated to have grown by 17.2\% between 1990 and 2004, or twice the rate of the remainder of New England (SPNHF, 2005).
- The state's population has been projected to grow $28.4 \%$ between 2000 2025 (New Hampshire Office of Energy and Planning (NHOEP), 2004).

These projected populations assumed no significant change in energy prices. They also implicitly assumed no significant growth in population influx resulting from potential climate change.

## TCHH2 Research Direction

Given the significant loss of high yield stratified-drift aquifers, and the anticipated continued pressure on these resources, this research investigated the relationship between population and high-yield aquifer loss in New Hampshire, and projected high-yield aquifer loss out to 2025.

## Literature Review

This research builds on the prior work documented in Chapter I, which utilized a GIS-overlay analysis to determine remaining NH stratified-drift aquifer with potential to serve as a large municipal water-supply after considerations for water quantity and water quality in 2000.

The prior work utilized GIS datasets produced by the U.S. Geological Survey in cooperation with the state of New Hampshire (USGS, 1995). The project was completed in 1996, and produced both digital and paper maps of saturatedthickness and transmissivity $(\mathrm{T})$, for the stratified-drift aquifers of 13 study areas covering New Hampshire. Aquifer transmissivity was delineated using horizontal hydraulic conductivities estimated from USGS drill logs, and consultant well pumping-test reports, where available (USGS, 1992a; USGS 1995).

The prior effort was, in large part, inspired by 1994 USGS research in Cape Cod to identify areas available for future use as public water-supply (USGS, 1994a). In that study, the authors, Harris and Steeves, assembled data on the six groundwater-flow cells of the Cape Cod aquifer. Seven criteria (three of which were landuses) were selected for a regionally consistent constraint-analysis to identify remaining potential public water-supply areas: The landuse-based criteria were used to account for: A) regional groundwater-quality conditions
resulting from non-point source pollution, and B) state regulations concerning landuse near public water-supplies. Harris and Steeves also allowed for potential saltwater intrusion areas by using modeled hydraulic head contours.

Having assembled or created all necessary data, the authors then overlaid the layers in order of increasing limitation on the potential for public water-supply. In the final analysis, only $5.6 \%$ of the total land area of Cape Cod remained available for development as a potential public water-supply. A more complete review of this work is included in the Literature Review of Chapter I

A separate GIS-based study relating to the critical nature of existing and future water supplies in New Hampshire was performed by the Society for the Protection of New Hampshire Forests (SPNHF) in 1997. The effort investigated the necessity of a public water-supply land-conservation program for NH (NHDES, 2000). Derived critical water-supply lands (defined as the water supply source plus its NHDES-determined protection area) were analyzed for existing levels of water-supply protection based on SPNHF data. The greatest protection was considered to be outright ownership of the land, followed by easements, and then by other types of conservation such as private or public natural reserves. Of the critical water-supply lands in NH , only 11.8 percent were found to be protected through ownership or easement (SPNHF, 1998a). A more complete review of this work is included in the Literature Review of Chapter I.

The prior work of the author that formed a foundation for the current research extended the works of Harris and Steeves, and the SPNHF work by incorporating water quantity constraints based on aquifer transmissivity (Lough and Congalton, 2005). Unlike the SPNHF work, it focused purely on stratified-drift aquifers, and allowed for water quality constraints on potential water availability.

In that prior work, OSDA75 and OSDA150 referred to areas of Original StratifiedDrift Aquifer (OSDA) delineated by the USGS as having a transmissivity of at least $1000 \mathrm{ft}^{2} / \mathrm{d}$ or $2000 \mathrm{ft}^{2} / \mathrm{d}$, respectively. The numeric suffixes indicated that the transmissivities of $1000 \mathrm{ft}^{2} / \mathrm{d}$ and $2000 \mathrm{ft}^{2} / \mathrm{d}$ had been related to potential well yields of 75 gpm and 150 gpm , respectively, based on a relationship derived from Krasny, 1993. These well yields were intentionally described as potential since by necessity, the analysis did not account for water budgets, contributing areas, boundary conditions, confining strata or errors resulting from spatial interpolations.

However, the potential well yields allowed determination of the setbacks required (300 or 400 ft ) from cultural features, if one were to locate a 75 gpm or 150 gpm water-supply well on OSDA75 or OSDA150 (NHDES, 1995; NHDES, 1999a; NHDES, 199b; NHDES, 2005). These setbacks, plus others for surface water, and for potential or known contamination sites deemed a significant health hazard (e.g. septage sludge lagoons), were spatially overlain to approximate the

OSDA75 and OSDA150 remaining available for future large water-supply wells, as of 2000 .

In Chapter I, RSDA75 and RSDA150 respectively referred to the areas of OSDA75 and OSDA150 that remained in a given town after the above analysis for minimum-protective water-quality setbacks had been carried out. In that work, OSDA75 was found to occupy just $3.5 \%$ of NH. As of 2000, $63.4 \%$ of this potential area for locating a 75 gpm well had been lost due to water quality buffers (OSDA75L). Just 36.6\% remained available (RSDA75). OSDA150, a subset of OSDA75, was found to contain just $1.8 \%$ of NH area. Of this aquifer subset having potential for at least a 150 gpm well yield, $71.8 \%$ had been lost (OSDA150L) as of 2000, leaving $28.2 \%$ as RSDA150 (Figure 15). Table 16 contains these details.

While the prior research was valuable, it was limited to quantifying the amounts of aquifer lost, circa 2000. The research documented by this chapter, utilized the prior data on high-yield aquifer losses, on-aquifer populations in 2000, and population projections by town to estimate NH aquifer loss over time to 2025.


Figure 15. Upland areas, OSDA, OSDA<75, OSDA75, and OSDA150 as a percent of New Hampshire's area. Uplands and OSDA are mutually exclusive. OSDA<75 and OSDA75 are mutually exclusive subsets of OSDA. OSDA150 is a subset of OSDA75. After water quantity and water quality considerations for the year 2000, $63.4 \%$ of OSDA75 and $71.8 \%$ of OSDA150 had been lost to setbacks. $36.6 \%$ OSDA75 and 28.2\% OSDA150 remained available for locating potential high yield wells (RSDA75 and RSDA150).

|  | OSDA75 | OSDA150 |
| :---: | :---: | :---: |
| Cultural Feature Setback (ft) Required | 300 (75 gpm well) | 400 (150 gpm well) |
| \%NH Area | 3.5 | 1.8 |
| Original ( $\mathrm{mi}^{\mathbf{2}}$ ) | 323.6 | 168.7 |
| Lost to Buffers | 205.2 (-63.4\%) | 121.1 (-71.8\%) |
| RSDA75 / RSDA 150 | 118.4 (36.6\%) | 47.6 (28.2\%) |

Table 16. Key characteristics for OSDA75, RSDA75, OSDA150 and RSDA150 in the year 2000 (Lough and Congalton, 2005).

## Methods

The specific questions for this research were:

## TCHH2 Question 1

## How much OSDA75 may be lost to minimum-protective water-quality setbacks from development in NH by 2025?

## TCHH2 Question 2

How much OSDA150 may be lost to minimum-protective water-quality setbacks from development in NH by 2025?

The New Hampshire Office of Energy and Planning has projected population out to 2025 , for 234 of the state's 259 towns (NHOEP, 2005). By 2025, NHOEP expects that total state population will have grown by $28.4 \%$.

Water-quality related losses of high-yield aquifer in New Hampshire were detailed in the Literature Review Section. These losses primarily resulted from state-required setbacks for cultural features.

Assuming that a relationship exists between population and the on-aquifer losses, and that on-aquifer populations will grow at the predicted state average (28.4\% over 25 years), then interpolation suggests that the 63.4\% OSDA75 and $71.8 \%$ OSDA150 losses of 2000 will grow to $81.1 \%$ and $91.9 \%$ respectively. Consequently, it was hypothesized that:
$\mathbf{H}_{0}$ : At least $81.1 \%$ of OSDA75 in New Hampshire will have been lost to water quality setbacks from development, as of 2025;
and
$\mathbf{H}_{0}$ : At least $91.9 \%$ of OSDA150 in New Hampshire will have been lost to water quality setbacks from development, as of 2025.

## Method Overview

A key assumption in pursuing this work is that the historical factors affecting development such as energy prices, landuse practices and aquifer protection ordinances were constant in the source data, and will remain constant into the future. This simplifying assumption is necessary given the regional scope of this work, and the limited resolution in time and space of the underlying datasets. For instance, while a GIS layer for 1990 population exists, GIS layers for potential and known contamination sources in 1990 do not.

To address the research questions, populations on OSDA75 and OSDA150 were first quantified by town for 1990 and 2000. These data were coupled with town population projections to 2025 to estimate the on-aquifer populations (OSDA75P and OSDA150P) in 2025, using principal components regression.

Subsequently, OSDA75 and OSDA150 aquifer losses by town as of 2000 were regressed against their respective aquifer areas and on-aquifer populations. The resulting models were then driven by the projected OSDA75 and OSDA150 populations to estimate the aquifer losses by town in 2025 for the 75 gpm and

150 gpm well analyses (OSDA75L and OSDA150L), for four scenarios. The two hypotheses were then evaluated against the statewide summed aquifer-losses of the most probable scenarios. Finally, trend statistics regarding the possible impact of aquifer protection ordinances were evaluated, in light of the results of the aquifer loss modeling.

## TCHH2 Data Sources

Four Geographic Information System (GIS) data layers were acquired for this research:

- Two 1:100000 U.S. Census Bureau TIGER (Topologically Integrated Geographic Encoding and Referencing) GIS files and associated population data (1990 and 2000). (Digital GIS data are not available for prior US censuses.)
- A 1:24000 transmissivity GIS layer for the state of New Hampshire, assembled from 13 separate study areas, obtained from the USGS.
- A 1:24000 GIS layer for the political boundaries of New Hampshire from the New Hampshire state GIS repository, GRANIT.

In addition, a tabulation of high yield stratified-drift aquifer lost by town in New Hampshire for year 2000 was acquired from prior research by the author (Lough and Congalton, 2005). Specifically, this tabulation listed by each town OSDA75L and OSDA150L which are the areas of OSDA75 and OSDA150 that were lost to considerations for water quantity and water quality, as of 2000.

## TCHH3 TIGER Data

The TIGER data spatially delineate populations in New Hampshire to the census block level. A census block is the smallest geographic unit for which the Census Bureau tabulates "100 percent" data, the information collected in the form distributed to all households. Many blocks correspond to individual city blocks bounded by streets. However, blocks, especially in rural areas, can include many square miles, and may have boundaries that are not streets (U.S. Census Bureau, 2006). This variable spatial resolution was accepted for the research at hand as an acknowledged limitation of the dataset.

## TCHH4 Tiger Data Preparation

In both the 1990 and 2000 TIGER files, large subsets of rural blocks did not include surface water polygons. Since accurate population densities were required for each census block for population reconstruction after any GIS overlay operation, surface water polygons were acquired from USGS Digital Line Graphs, and overlain onto these census blocks. All original population counts were then assigned to the land area of each original block.

## TCHH3 USGS Transmissivity Layer

Transmissivity data covering thirteen separate study areas from the 1984-96 USGS Stratified-Drift Aquifer Studies in New Hampshire were merged into a single GIS polygon layer. Although the 13 study areas did not use identical ranges of transmissivity, the range overlap was such that the dataset could be utilized for the statewide analysis of this study.

## TCHH4 USGS Data Preparation

Quality-control checks of the USGS stratified-drift coverages corrected a number of errors, which included:

- Attribute data where aquifer polygon maximum and minimum transmissivity values did not match associated transmissivity range codes.
- Attribute data where aquifer polygon transmissivity-range codes were inconsistent across study areas.
- Study area boundaries that were slightly misaligned in space (e.g. Nashua Region Planning Commission study area).
- Study area boundaries that overlapped (e.g. the Lower Merrimack study area overlapped both the Middle Merrimack and the Lamprey and Nashua Regional Planning Commission study areas).
- Inconsistent treatment of surface water features between two study areas (Nashua Regional Planning Commission and Middle Connecticut) and the remaining 11 study areas.
- Apportionment of overlapping USGS transmissivity ranges into mutually exclusive ranges based on occurrence elsewhere in the state.


## TCHH2 GIS Overlay Operations

All GIS operations were carried out in arcGIS 9.0 (ESRI, 2004).

## TCHH2 Populations and Stratified-Drift Aquifer

Population density attributes were created and calculated for the 1990 and 2000
US Census TIGER files. These files were then overlain on the statewide
transmissivity map, and clipped with the NH political boundary layer (excluding the Isle of Shoals, which has no documented OSDA).

Polygon populations were then recalculated for the derivative GIS layer based on polygon area and the original population density attributes. Polygon attribute data were exported to MS Access for pivot table analysis of population by transmissivity and town. Three study areas (Nashua Regional Planning Commission, the Bellamy, Cocheco and Salmon Falls, and the Pemigiwasset) had Populations residing on polygons of $0-2000 \mathrm{ft}^{2} / \mathrm{d}$ transmissivity. These were apportioned to the ranges (0-1000 and 1000-2000 $\mathrm{ft}^{2} / \mathrm{d}$ ) based on occurrence in the 10 other study areas in the state.

Five population subsets were calculated for the state, and by town for 1990 and 2000: Uplands, OSDA, OSDA<75, OSDA75, and OSDA150. Populations residing on stratified drift of unknown transmissivity were aggregated within OSDA75 and OSDA150 according to the frequency of populations observed to reside on OSDA75 and OSDA150 elsewhere in the state.

The useful spatial resolution for the derivative GIS layer is $1: 100000$, the same as the general resolution of the US Census TIGER files. This was sufficient resolution for the purposes of the research at hand since the derivative data was to be aggregated to the town level for modeling, with the final product being a statewide summary of aquifer loss in 2025.

## TCHH2 Aquifer Loss as a Function of Aquifer Size + Population

To estimate aquifer loss, model equations developed for the classes of high-yield aquifer losses (OSDA75L and OSDA150L) were based on the general equation:

$$
L=c \cdot A^{b_{1}} \cdot P^{b_{2}}
$$

## Equation 2

or

$$
L=e^{b_{0}} \cdot A^{b_{1}} \cdot P^{b_{2}}
$$

## Equation 3

where:
$\mathrm{L}=$ area $\left(\mathrm{mi}^{2}\right)$ of high-yield aquifer lost by town as of 2000
(i.e. OSDA75L or OSDA150L depending on analysis)
$A=$ area $\left(\mathrm{mi}^{2}\right)$ of high-yield aquifer by town (a constant for each town) (i.e. OSDA75 or OSDA150)
$P=$ population on high-yield aquifer by town (i.e. OSDA75P, OSDA150P)
$b_{i}=$ powers of the given variables, and of $e$

$$
C=\text { constant }=e^{b_{0}}
$$

The above equations were constructed based on the fact that high-yield aquifer lost by town as of 2000 (L) was well correlated to both aquifer area (A) and onaquifer population $(P)$. Equation variables eliminated from consideration as model variables due to lower correlation to aquifer losses included aquifer losses by 6 types (e.g. roads, residential/commercial/industrial landuse, potential and known contamination sites) and remaining high-yield stratified drift. Losses due to hydrography could have been modeled as a separate variable, but were relatively small (6-8\%), and are incorporated into the constant $C$ of equation 2.

For data preparation, natural log transforms were used to remove positive skewness and normalize both aquifer area (A) and on-aquifer population (P). Of the 234 NH towns for which NHOEP projected populations to 2025, 215 had populations on OSDA75 and 181 had populations residing on OSDA150. In both cases, South Hampton, Piermont and Washington were eliminated visually during normalization as low end population outliers leaving 212 and 178 towns for model development.

These two town sets, encompassed 98.3\% of OSDA75, and 93.5\% of OSDA150 respectively. Figure 16A, Figure 16B, and Figure 16C depict the thin, 3-dimensional,oval-prism formed by OSDA75 aquifer lost (L), aquifer size (A) and aquifer population in $2000(\mathrm{P})$ in natural-log space. Figure 16B (which is Figure 16A rotated to the right) demonstrates that aquifer lost approaches the original aquifer area as a limit. Figure 16C (which is a plan view of Figure 16B) demonstrates that, a strong correlation exists between the desired independent variables of aquifer size and aquifer population. A similar geometry exists for OSDA150 aquifer lost, aquifer area, and aquifer population in 2000. Since GIS data for key data do not exist for 1990, it is not possible to create a comparable 3-dimensional dataset (aquifer-loss/aquifer-size/aquifer-population) for 1990.

To address the inter-dependence of aquifer size and population, principalcomponents regression was utilized to generate predictive models within The Unscrambler, a data modeling software available from Camo.


Figure 16. Three perspectives of stratified drift with potential to yield 75 gpm or greater aquifer lost (OSDA75L) by town as of 2000 vs. aquifer area and onaquifer population. All points are natural-log transformed.

In this, principal-components analysis transformed In-normalized coordinates for aquifer area and population to new variable coordinates with axes centered on the data cluster, and oriented to capture the maximum variances of the data cluster. In the new coordinate system, the data points were independent, and therefore could be regressed against In-normalized aquifer losses by standard linear regression. The regression equation was then back-transformed to the original axes for final model calculations in original units (Camo, 2005).

The results of the OSDA75L and OSDA150L models are detailed in
Table 17. Comparison of measured to predicted area lost reveals an $r^{2}$ of 0.97 for OSDA75L model (Figure 17), and an $r^{2}$ of 0.94 for the OSDA150L model.

| Characteristic | OSDA75 <br> Model | OSDA150L <br> Model |
| :---: | :---: | :---: |
| \%NH OSDA75 | $98.3 \%$ | NA |
| \%NH OSDA150 | NA | $93.5 \%$ |
| $\mathbf{C}$ | 0.297181 | 0.356876 |
| $\mathbf{B}_{\mathbf{0}}$ | -1.21341 | -1.03037 |
| $\mathbf{B}_{\mathbf{1}}$ | 0.816302 | 0.832147 |
| $\mathbf{B}_{\mathbf{2}}$ | 0.148760 | 0.135459 |
| $\mathbf{r}^{\mathbf{2}}:$ Measured |  |  |
| to Predicted | 0.97 | 0.94 |

Table 17. Characteristics of OSDA75L and OSDA150L aquifer-loss models.


Figure 17. L2000 measured vs. predicted by principal components regression.


Figure 18. A plot of the residuals for the modeled OSDA75L ( $\mathrm{mi}^{2}$ ) in 2000 against the normal cumulative distribution function.

Plots of the modeled aquifer-loss residuals against a normal distribution proved a very good fit, implying that the model was relatively unbiased. Figure 18 displays the fit for the OSDA75L residuals for the year 2000 aquifer loss data. The equations were only considered valid on a town aquifer level, in data regions within or close to the regression-source data. Predictive accuracy for the summed losses of the state was expected to be greater than individual town losses, since the regression process seeks to minimize error within a data cluster.

## Projected Populations on High-yield aquifer

The New Hampshire Office of Energy and Planning has projected a statewide 28.4\% growth in population for 234 of 259 towns between 2000 and 2025. These data were used to project on-aquifer populations out to 2025, in order to drive the two aquifer-loss models. For comparison of results, four on-aquifer population-growth scenarios were developed (improbable, most probable, less probable and least probable), as described below.

## Scenario A: Zero Growth of Aquifer Population:

Assumption: All population growth out to 2025 in all towns will occur outside of high-yield aquifer areas. High-yield aquifer populations remain stable to 2025. Given historical population growth on stratified drift, this scenario was deemed Improbable.

## Scenario B: Below-Mean Growth of Aquifer Population:

Assumption: Population growth occurs in towns, on high-yield aquifers out to 2025 , according to the characteristics observed in 1990-2000. This scenario, based on historical data, was deemed as the Most Probable.

## Scenario C: Above-Mean Growth of Aquifer Population:

Assumption: Population growth occurs in towns, both on high-yield aquifer out to 2025, at a higher than historical growth rate, resulting in on-aquifer population increase for 2025 that is twice that of scenario B over scenario (zero growth) A. Scenario C, based on growth rates above historical data, was deemed Less Probable. Such a scenario might be possible if energy prices were to rise sufficiently to significantly reverse the decentralization away from town centers, observed since the 1960's.

## Scenario D: Doubling of Aquifer Population:

Assumption: Population growth occurs in towns, both on high-yield aquifer out to 2025, at a far higher than historical growth rate, resulting in a doubling of the on-aquifer population by 2025 over scenario (zero growth) A. Such a scenario might result from extreme growth in energy prices (possibly reversing the decentralization trend mentioned above), and/or a large influx of population from outside the state. Since there is no historical precedent for this circumstance, Scenario D was deemed Least Probable.

## TCHH3 Aquifer-Loss Estimates

Under each scenario, the projected 2025 town aquifer-losses were calculated as:

$$
\mathrm{L}_{2025}=\min \left(\text { measured } \mathrm{L}_{2000}+\operatorname{modeled} \Delta \mathrm{L}_{(2000-2025)}, \mathrm{A}\right) \quad \text { Equation } 4
$$

where:

$$
\begin{aligned}
& \mathrm{L}_{2025}=\text { the estimated aquifer loss }\left(\mathrm{mi}^{2}\right) \text { in } 2025 \text { for a given town's } \\
& \text { high-yield aquifer } \\
& \mathrm{L}_{2000}=\text { the measured aquifer loss }\left(\mathrm{mi}^{2}\right) \text { as of } 2000 \text { for the given } \\
& \text { town }
\end{aligned}
$$

$\Delta \mathrm{L}_{(2000-2025)}=$ the difference in modeled aquifer losses $\left(\mathrm{mi}^{2}\right)$ for the given town in 2000 and 2025
$A=$ the area $\left(\mathrm{mi}^{2}\right)$ of the high-yield aquifer for the given town
The model equations were utilized to calculate incremental rather than absolute aquifer-loss estimates. Restricting the estimated loss to the minimum of ( $L_{2025}, A$ ) by town ensured that physical reality was met. The estimated town aquifer-losses were summed along with the losses (as measured in 2000) of the few towns that either had no measured populations or were removed during normalization of the model data, to project the potential statewide high-yield aquifer lost under each scenario.

The evaluate the null hypothesis, the hypothesized projected high-yield aquifer loss for 2025 was compared to the amount of high-yield aquifer lost in the state for 2025 as modeled under the most likely circumstance, scenario B. Scenarios A, C and D provided comparative values for general reference.

## Results

## Population Accuracy

TIGER-derived statewide populations exceeded NHOEP published estimates by 127 and 226 people for the 1990 and 2000 censuses, representing $0.018 \%$ and $0.011 \%$ difference respectively. Consequently, the population accuracy of the dataset was sufficient for this study. The net differences stemmed from 25 sparsely populated rural areas where NHOEP does not formally track population, but TIGER-file data existed, and from a small population on the Isles of Shoals, which were excluded from the study.

## State Populations on Uplands and Stratified Drift

Table 18 details the state population for 1990 and 2000 on upland areas and subsets of stratified drift. It reveals that over the decade, the state population grew $11.4 \%$, while upland areas saw above-average population growth (14.2\%), and stratified-drift aquifers experienced below-average population growth (7.7\%).

|  | NH Population Subsets: 1990-2000 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Upland | OSDA | OSDA<75 | OSDA75 | OSDA150 |
| 2000 Census | 1,235,777 | 732,380 | 503,397 | 362,118 | 141,279 | 87,660 |
| 1990 Census | 1,109,244 | 641,218 | 468,026 | 337,621 | 130,405 | 80,840 |
| Pop. Growth | 126,533 | 91,162 | 35,371 | 24,497 | 10,874 | 6,820 |
| \%Change | 11.4\% | 14.2\% | 7.7\% | 7.3\% | 8.3\% | 8.4\% |

Table 18. Growth for population subsets in New Hampshire between 1990 and 2000, as derived from US Census TIGER files. Upland population growth was almost twice as great as on-aquifer. Growth was greater on high yield areas than on low yield areas. Note: OSDA<75 and OSDA75 are mutually exclusive, while OSDA150 is a subset of OSDA75.

Consequently, while the total stratified-drift aquifer population grew by more than 35,000 people, the subset declined as a percent of the state population. Such a
decline corresponds to the decentralization (population growth away from traditional town centers) observed by the New Hampshire Office of Energy and Planning since 1960 (NHOEP, 2004). The 14.2\% growth in upland populations reflects this.

Table 18 also reveals that OSDA75 and OSDA150 experienced somewhat higher growth (8.3\% and 8.4\%) than lower yield SDA (OSDA<75, 7.3\% growth).

|  | NH Population Subsets: 1990-2000 as \%State |  |  |  |  |  |
| :---: | ---: | :---: | :---: | :---: | ---: | ---: |
|  | People | Upland | OSDA | OSDA<75 | OSDA75 | OSDA150 |
| $\mathbf{2 0 0 0}$ Census | $1,235,777$ | $59.3 \%$ | $40.7 \%$ | $29.3 \%$ | $11.4 \%$ | $7.1 \%$ |
| $\mathbf{1 9 9 0}$ Census | $1,109,244$ | $57.8 \%$ | $42.2 \%$ | $30.4 \%$ | $11.7 \%$ | $7.3 \%$ |
| Difference | 126,533 | 1.45 | -1.45 | -1.13 | -0.33 | -0.19 |
| \%NH Area | $100 \%$ | $85.6 \%$ | $13.4 \%$ | $9.9 \%$ | $3.5 \%$ | $1.8 \%$ |

Table 19. Population subsets for New Hampshire between 1990 and 2000, expressed as a percentage of the state's total population, compared to occupied area. $40.7 \%$ of New Hampshire's population resided on stratified-drift aquifer, which occupies just $13.4 \%$ of New Hampshire's area. Note: OSDA<75 and OSDA75 are mutually exclusive, while OSDA150 is a subset of OSDA75.

Table 19 details the aquifer populations as percentages. These data revealed that, in 2000 , fully $40.7 \%$ of New Hampshire's population resided on stratifieddrift aquifer, which occupies just 13.4\% of New Hampshire's area. This was in line with the prior observation that $57.7 \%$ of all potential and known contamination sites in New Hampshire existed on stratified drift in 2000 (Lough and Congalton, 2005) since development includes both human residency and places of occupation.

Table 20 reveals that despite having significantly lower-than-average relative-population-growth, stratified-drift aquifers have experienced higher than average changes in absolute population density. High-yield areas (OSDA75) experienced changes in population density three times that of upland areas and 2.5 times greater than the state average. The highest yielding areas (OSDA150) experienced the greatest absolute change, almost three times that of the state as a whole.

|  | Total Population Density |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | State | Upland | OSDA | OSDA<75 | OSDA75 | OSDA150 |
| 2000 Population Density (p/mi ${ }^{2}$ ) | 133.1 | 91.1 | 44.3 | 393.0 | 436.7 | 494.4 |
| 1990 Population Density ( $\mathbf{p} / \mathrm{mi}^{2}$ ) | 119.5 | 79.8 | 375.9 | 366.4 | 403.1 | 456.0 |
| Change in Density ( $\mathrm{p} / \mathrm{mi}^{2}$ ) | 13.6 | 11.3 | 28.4 | 26.6 | 33.6 | 38.5 |
| Annual \%Change | 1.14\% | 1.42\% | 0.76\% | 0.73\% | 0.83\% | 0.84\% |

Table 20. Change in population density by aquifer subset.

Table 20 also reveals that while stratified-drift aquifers dominate the absolute changes in population density, they are subordinate to uplands in annual percent rate of change in population density. This latter variable is equivalent to the percent change observed in the population subsets of Table 18.

In summary, while stratified-drift aquifers have shown population growth well below that of the state, about half that of upland areas; population densities on stratified drift were significantly greater than the state average, especially on higher yield stratified drift.

## The Influence of Aquifer Protection Ordinances

Table 21 details characteristic statistics for towns understood to have aquifer protection as of 2006. 75 towns having high-yield aquifer, were identified from separate lists acquired from NHDES and NHOEP as having aquifer protection in place. This left 137 towns (of the 212 modeled towns) identified by default, as likely not having aquifer ordinances in place.

|  | Status | OSDA Pop. |  | OSDA75 |  | $\begin{array}{c\|} \hline \text { Mean } \\ \text { OSDA75 } \end{array}$ | $\begin{gathered} \text { OSDA75P } \\ \text { Density }(\mathrm{p} / \mathrm{mi} 2) \end{gathered}$ |  | $\begin{array}{\|c\|} \hline \text { OSDA75 } \\ \text { Lost by } \\ 2000 \end{array}$ | Lost Per Capita by 2000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2000 | $\Delta 1990$ | $\mathrm{mi}^{\mathbf{2}}$ | Towns | $\mathrm{mi}^{\mathbf{2}}$ | 2000 | \% 41990 |  |  |
| Modeled | Prot | 87,122 | 7,635 | 149.0 | 75 | 1.99 | 585 | 9.6 | 98.7 | 0.0011 |
| Towns | UnProt | 54,135 | 3,227 | 168.6 | 137 | 1.23 | 321 | 6.3 | 105.2 | 0.0019 |
| T-Test | Pro | 15976 | 1038 | 51.3 | 37 | 1.39 | 311 | 6.9 | 33.0 | 0.0021 |
| Subsets | UnProt | 14680 | 674 | 50.4 | 37 | 1.36 | 291 | 4.8 | 33.7 | 0.0023 |

Table 21. Key statistics for the protected and unprotected subsets of the 212 NH modeled towns, which together encompass $98.2 \%$ and $99.9 \%$ of all OSDA75 and the OSDA75 population in New Hampshire in 2000. The lower rows contain the statistics for the 37 protected/unprotected pairs used to calculate a T-statistic.

Table 21 reveals that compared to the 137 unprotected aquifer towns, the 75 protected-aquifer towns had 1.6 times the OSDA75 population, and 1.8 times the 1990-2000 population growth, despite having, about $12 \%\left(20 \mathrm{mi}^{2}\right)$ less OSDA75 area. The 75 protected towns had a net per-capita loss of OSDA75 about half that of the unprotected towns. This suggests that aquifer ordinances may have protected stratified-drift aquifers, since we would expect them to see lower incremental OSDA75 losses per person due to increased restrictions on hazardous business/commercial landuses and due to restrictions on the amount of impermeable area. To calculate a T-statistic, 37 pairs of protected/unprotected-aquifer towns with the least (below-average) distance between them in log space (Log OSDA75, OSDA75P) were identified. This
resulted in protected/unprotected town pairs that were most alike in area and population. A heteroscedastic T-Test of log-normalized per capita OSDA75losses revealed a $57 \%$ likelihood that the protected and unprotected OSDA75 losses per capita as of 2000 were drawn from the same population.

Consequently, it cannot be stated conclusively here that aquifer protection has reduced the amount of high yield aquifer losses occurring with population growth.

## Scenarios for Stratified-Drift Aquifer Populations in 2025

Table 22 details year 2025 populations, the 2025 percent of the state population, and the percent change in population for OSDA75 and OSDA150, by scenario.

|  | 2000-2025 Population Growth Scenarios | $2025$ <br> Population | $\begin{aligned} & \text { \%NH } \\ & \text { Pop. } \end{aligned}$ | \% ${ }_{\text {Prop. }}$ | Description of Growth |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A: Improbable | 141,279 | 8.9 | 0.0 | Zero |
|  | B: Most Probable | 168,175 | 10.6 | 19.1 | Below Average |
|  | C: Less Probable | 193,586 | 12.3 | 38.2 | Above Average |
|  | D: Least Probable | 282,558 | 17.8 | 100.0 | Double Pop |
|  | A: Improbable | 87,660 | 5.5 | 0.0 | Zero |
|  | B: Most Probable | 104,839 | 6.7 | 19.6 | Below Average |
|  | C: Less Probable | 122,018 | 7.7 | 39.2 | Above Average |
|  | D: Least Probable | 175,320 | 11.1 | 100.0 | Double Pop |
|  | State Population | 1,586,300 | 100\% | 28.4\% | Average |

Table 22. Projected Populations for 2025 and the percent growth from year 2000. Scenario B was based on historical population behavior 1990-2000.

| Projected 2025 Aquifer Loss |  |  |  |  | As \%OSDA by Scenario |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Population | 2025 |  |  |  |  |
| Scenario | \%OSDA75L | $\mathbf{\Delta 2 0 0 0}$ | \%OSDA150L | $\mathbf{\Delta 2 0 0 0}$ |  |
| A: Improbable | 63.4 | 0.0 | 71.8 | 0.0 |  |
| B: Most Probable | 65.6 | 2.2 | 74.2 | 2.4 |  |
| C: Less Probable | 67.0 | 3.6 | 75.7 | 3.9 |  |
| D: Least Probable | 70.6 | 7.2 | 79.2 | 7.4 |  |
| Hypothesized | 81.1 | 17.7 | 91.9 | 19.8 |  |

Table 23. Projected aquifer losses in 2025 under 3 population growth scenarios, and hypothesized loss based on interpolation of population to aquifer-lost ratios. Table 23 summarizes the results of applying the aquifer loss equation to the three population growth scenarios for OSDA75 and OSDA150. Under Scenario A (Improbable), no further population growth on high-yield aquifer was postulated, resulting in no further aquifer loss between 2000 and 2025. Under Scenario C (Less Probable), on-aquifer populations grew at rates higher than the state average population growth, resulting in 67.0\% and 75.7\% net losses of OSDA75 and OSDA150 respectively by 2025, or incremental losses of an additional 3.6 and 3.9 percentage points respectively. Under Scenario D (Least Probable), on-aquifer populations grew at rate 3.5 times that of state average population growth, resulting in a doubling of on-aquifer populations by 2025. Statewide losses of OSDA75 and OSDA150 grew to 70.6\% and 79.2\% by 2025. Incremental losses were an additional 7.2 and 7.4 percentage points respectively. Under Scenario B, (Most Probable), predicted total OSDA75 and OSDA150 losses grew to $65.6 \%$ and $74.2 \%$, respectively by 2025. These results were far less than the hypothesized $81.1 \%$ and $91.9 \%$, respectively. Under the acceptance conditions laid out in the Methods section, both research hypotheses were rejected.

## Discussion

The modeled incremental aquifer-losses of 2.2 and 2.4 percentage points for OSDA75 and OSDA150 respectively, are far lower than hypothesized, given the projected $28.4 \%$ state population growth for 2025 . The hypothesized aquifer losses were based on linear interpolation relative to the projected state population growth. The models reveal that a highly nonlinear relationship exists, and the following sections explore the causative factors.

## Relationship of State and On-Aquifer Populations

The hypotheses assumed that on-aquifer populations would grow at a rate similar to that for the state as a whole. However, Table 1 reveals that between 1990 and 2000, the actual OSDA75 population grew $8.3 \%$, a rate approximately one quarter less than that of the state population as a whole (11.4\%). While the lower growth rate certainly contributed to low modeled aquifer losses, the observation is disproportionate to their very low magnitude. Furthermore, the low growth rate cannot explain the extremely low aquifer losses of Scenario C, which was based on above-average on-aquifer population growth rates.


Figure 19. Aquifer development for OSDA75, and the line of theoretical maximum loss, for 212 NH towns (98.3\% of the state's OSDA75).

## Aquifer Development

Figure 19 depicts aquifer-development over time for OSDA75, and the theoretical maximum loss, derived from equation 2. As each town has a fixed amount of OSDA75 aquifer, a given town's aquifer progresses parallel to the vertical axis as population grows, and population density increases. Consequently, aquifer losses increase as the amount of developed lands increase.


Figure 20. Potential OSDA75L and OSDA150L (aquifer area lost) as of 2000, by category, if buffer overlap is not considered. (PKCS = Potential/Known contamination. Res/Com/Ind = residential/commercial/industrial).

## Buffer Overlap

Buffer overlap refers to the coinciding of setbacks for different features (e.g. buildings and roads) over the same spatial area. For this study, potential buffered area lost refers to aquifer area that would be lost if overlap were not considered. Actual buffered area lost refers to the aquifer area lost when overlap is considered. Figure 20 depicts the potential buffered area lost for OSDA75 and OSDA150 by six categories of landuse. By far the greatest aquifer losses result from road construction, followed by residential/commercial/industrial development, and potential and known contamination sites.

In terms of aquifer development, 6-8\% area losses to 50 ft setbacks required for surface water buffers pre-exist any development losses. Initial population settlement then creates roads that have large (300-400 ft) buffers to each side of the road's right-of-way on the aquifer. Further residential, commercial and industrial development commonly takes place within the existing 650-850 ft corridor of road-buffered area, creating a large amount of buffer overlap.

Further potential and known contamination sites occur primarily within the commercial and industrial areas, creating yet further overlap. Minor amounts of further overlap results from railway lines and pipelines.

|  | OSDA75 Lost <br> (300 ft Buffer) | OSDA150 Lost <br> (400 ft Buffer) |
| ---: | :---: | :---: |
| Potential $\mathbf{~ m i}^{2}$ | 360.4 | 232.6 |
| Actual $\mathbf{~ m i}^{2}$ | 205.4 | 121.2 |
| Actual/Potential | $57.0 \%$ | $52.1 \%$ |
| Overlap | $43.0 \%$ | $\mathbf{4 7 . 9 \%}$ |

Table 24. Potential and actual OSDA75/OSDA150 area lost by 2000, and overlap percentages. Potential area lost is the sum of all buffers, if overlap is ignored.

Table 24 compares actual to potential aquifer losses in 2000. It reveals that the 75 gpm ( 300 ft cultural buffer) and 150 gpm ( 400 ft cultural buffer) analyses had 43.0\% and 47.9\% buffer overlap, respectively.

Figure 21 classifies NH OSDA75 aquifers on a town level as having high or low buffer overlap in the year 2000 analysis. The high/low overlap threshold was set to the observed average, a ratio of 0.57 , of actual to potential aquifer lost. The graphic reveals that while high buffer overlap can occur at any size of aquifer, in
general, moderate to large-sized, higher population-density aquifers (see Figure 19 for comparison) more frequently have high buffer overlap. This indicates that, as one would expect, more densely populated areas have greater buffer overlap, and are likely to have lower aquifer-loss per capita with population influx.

## Aquifer Fragmentation

Aquifer fragmentation refers to the polygon density (polygons $/ \mathrm{mi}^{2}$ ) of RSDA75 or RSDA150 after the spatial overlay analysis.

In Figure 22, a high/low fragmentation-index threshold was set to 112 fragments RSDA75/mi ${ }^{2}$. The threshold was determined visually to optimize the high/low subset contrast. The graphic reveals that, in general, smaller aquifers more frequently have high fragmentation of RSDA75. Such fragmentation will likely increase the difficulty of locating a high-quality, high yield well in these areas. Conversely, the lower frequency of high fragmentation in large aquifers should correlate to generally decreased difficulty of locating a high yield well in these areas.

Finally, Figure 22, when compared to Figure 19, reveals that smaller aquifers of both high and low population density can have high fragmentation, reflecting a greater vulnerability to population changes.


Figure 21. Relative OSDA75 buffer overlap as of 2000.


Figure 22. Fragmentation of OSDA75 aquifers as of 2000. The high/low threshold $=112$ fragments $\mathrm{RSDA} 75 / \mathrm{mi}^{2}$. Aquifers with higher population densities (see Figure 19) in general have higher fragmentation of RSDA75.


Figure 23. Theoretical \%OSDA75 loss versus aquifer population. The percentages of OSDA75 aquifers are indicated between the plotted class lines. The theoretical density of $100 \%$ loss is indicated at the end of each line.

## Aquifer Response to Population Increase

Figure 23 depicts theoretical OSDA75-loss curves (based on Equation 2 and Table 2) in response to population growth for towns with OSDA75 aquifers of 0.5 , 1.0 and $5.0 \mathrm{mi}^{2}$. Also indicated are the percentages of the 212 studied OSDA75 aquifers bracketed by these areas, and the population densities of $100 \%$ loss. The figure demonstrates that relatively small changes in on-aquifer population can rapidly drive the 120 NH towns having $0.5 \mathrm{mi}^{2}$ or less of OSDA75 towards $100 \%$ loss. Towns with higher quantities of OSDA75 have much lower aquifer losses in response to equivalent changes in population, and they achieve theoretical $100 \%$ loss at much higher population densities. This implies that larger aquifers historically have accommodated greater population densities.


Figure 24. OSDA75 lost to road buffers in 2000 by aquifer size and population.

## High Aquifer Losses in Early Development

For the $40.3 \%$ of the 212 studied OSDA75 aquifers that were less than or equal to $0.5 \mathrm{mi}^{2}$, Figure 23 also reveals that high aquifer losses exist in early development, including 6-8\% for pre-existing surface water buffers. Further large losses stem from buffer corridors tied to road construction for initial populations. Smaller OSDA75 aquifers are particularly vulnerable to losses from road construction for either on-aquifer or off-aquifer populations (Figure 24).

While high early losses are also likely the case for larger aquifers, their relative magnitude cannot be accurately represented in Figure 23, since Figure 19 reveals that there were no source data for the aquifer loss models in that region.


Figure 25. Town OSDA75P growth classes for 2000-2025, under Scenario B versus aquifer size and aquifer population in 2000.

## Location of On-Aquifer Population Growth

Figure 25 depicts town OSDA75P growth classes for 2000-2025 against aquifer size and population in 2000. Seventeen large-aquifer towns (mean OSDA75 = $5.4 \mathrm{mi}^{2}$ ), and having moderate to high projected population growth, encompass $2 / 3$ of the total projected 25 year on-high-yield aquifer growth. Consequently, most of the population growth was projected to occur on large aquifers that historically accommodated higher population densities with lower aquifer losses.

## Projected RSDA75 in 2025



Figure 26. Projected remaining stratified-drift aquifer in 2025 for 212 towns in New Hampshire.

Figure 26 depicts the projected remaining stratified-drift aquifer in 2025 for the 212 modeled towns in New Hampshire. Generally speaking, larger aquifers tend to have larger quantities of RSDA75, although exceptions exist. For example, Portsmouth and Newington, located on the coast, stand out as having moderate quantities of OSDA75 and very little anticipated RSDA75 for 2025.

As mentioned in the Results section, Table 21 (Results) suggests that aquifer protection ordinances may have reduced the amount of OSDA75 lost per capita
in those towns. However, a student's T-statistic, could not definitively conclude that the protected and unprotected OSDA75-aquifer-losses-per-capita were from different populations.

Furthermore, while the data preparation for the T-Test attempted to control area and population differences, the methodology did not address the impact of different types of aquifer protection, ordinance stringency, or the date implemented. Differences in population and the spatial area of protection would also have to be accounted for. Perhaps more importantly, Table 21 reveals that the protected aquifers were, in general, large aquifers, with high population densities. The aquifer-loss modeling study revealed that such aquifers have an enhanced ability to absorb population growth with a lower per capita aquifer loss. Consequently, it is inappropriate to draw any conclusions on the impact of aquifer protection, from the readily available data used in this study.

## Chapter II Conclusion



Figure 27. The status of OSDA75 as of 2000 for 212 towns in NH, representing 98.3 \% of the state's aquifer with potential to yield 75 gpm .

Figure 27 summarizes the situation for 212 the studied town OSDA75 aquifers.
As development occurs, population density, fragmentation and buffer overlap increase, resulting in higher aquifer losses. Smaller aquifers are more vulnerable to high early development-related losses. In general, larger aquifers experience lower fragmentation and higher buffer overlap rates. In addition, larger aquifers have historically accommodated higher population densities with lower per capita aquifer loss. Since the projected population growth was the greatest on larger
aquifers, and since on-aquifer population growth has historically been $1 / 2$ that of upland growth, the projected aquifer losses for 2025 were extremely low.

Prior work revealed that 63.4\% and 71.8\% of NH's stratified-drift aquifers with potential to yield at least 75 gpm and 150 gpm , respectively, was no longer available for locating such wells after minimum regulatory setbacks for water quality were considered. Given such a significant loss of water resources, this study has projected future high-yield aquifer losses as a function of population out to 2025 , when state's population is expected to have grown $28.4 \%$.

Preliminary analysis revealed that as of 2000, $40.7 \%$ of NH's population resided on stratified drift (13.4\% NH). 11.4\% lived on OSDA75, occupying just $3.5 \% \mathrm{NH}$ land area. $7.1 \%$ of the state's population resided on OSDA150, occupying just $1.8 \% \mathrm{NH}$ land area. Both of these population subsets grew at rates lower than the state average between 1990 and 2000. The relative populations (as a percent of state) on these aquifer subsets also decreased somewhat between 1990 and 2000, reflecting a trend towards town decentralization. However, the absolute populations on these aquifer subsets also increased over the same period, resulting in higher OSDA75 and OSDA150 population densities. OSDA150, the most transmissive subset, had both the greatest population density and the greatest increase in population density over the decade.

To address the study objective, principal components regression was used to develop highly predictive relationships of OSDA75 and OSDA150 aquifer losses. These models were then driven by on-aquifer population estimates to forecast aquifer losses as of 2025.

The most probable projections revealed that OSDA75 aquifer losses are expected to grow an additional $2.2 \%$ to a $65.6 \%$ net area loss; and that OSDA150 aquifer losses are expected to grow an additional 2.4\% to a $74.2 \%$ net area loss. These projected losses were far less than those hypothesized based on the projected growth in state population. The hypothesized losses were linear interpolations based on population growth, while actual aquifer losses were found to be highly non-linear functions of aquifer size and population. Reasons for the nonlinearity include:

- High early aquifer losses occur as the result of pre-existing hydrography and initial road construction.
- Subsequent development results in significant setback overlap, reducing further per capita aquifer losses.
- Larger high-yield aquifers historically have accommodated greater population densities with lower aquifer loss.

Finally, since the greatest population increases are projected to occur on the largest aquifers, these populations are absorbed with lower losses.

CAVEAT: This conclusion should not be interpreted as NH towns need be unconcerned about protecting their future water resources. The conclusion only indicates that the loss of Favorable Gravel Well Analysis areas (i.e. where large public water wells can located according to minimum state regulatory setbacks, and without consideration of physical water budgets, or aquifer boundary conditions), occurs at a slower rate on larger, more populated high-yield aquifers. The regulatory setbacks used are by far smaller than true wellhead protection areas for any large public water supply. Since the Favorable Gravel Well Analysis is a preliminary GIS-based analysis, the existence of any available FGW area does not guarantee that it is free of contamination, or exists in sufficient quantity.

## CHAPTER III

# EVALUATION OF THE ACCURACY OF CLASSED SATURATED THICKNESS IN THE STRATIFIED-DRIFT AQUIFERS OF NEW HAMPSHIRE 

Introduction

## The Value of Stratified-Drift Aquifers

One in four people in New Hampshire obtain their water from public water systems ${ }^{3}$ using sources supplied by groundwater, which is about the same as the national average (SPNHF, 1998b; USGS, 1987; USGS, 1998).

In 2003, 3882 individual wells were registered with the New Hampshire Department of Environmental Services (NHDES) as active public water-sources drawing on groundwater. Of these, the vast majority were bedrock wells. Only 624 (16\%) were wells known to be placed in stratified-drift aquifers.

Despite their relatively low numbers as public water-supply sources, stratifieddrift wells are particularly important due to their tremendous capability to yield large amounts of potable water. Based on average total daily groundwater

[^2]withdrawals in 1993, the few stratified-drift wells were about nine times as productive (18 million gal. per day) as all bedrock wells (2 million gal. per day) (Frederick H. Chormann Jr, NHDES; written communication, 1993; in Medalie and Moore, 1995, p. 4). For interested readers, greater detail on stratified-drift aquifers is contained in the dissertation Introduction and in Appendices $A$ and $B$.

## Knowledge of Data Limitations

To manage water resources in NH , state and federal regulators, town planners, conservation officers and environmental consultants depend heavily on stratifieddrift aquifer maps developed by the US Geological Survey in a cooperative project with the New Hampshire Department of Environmental Services, over 1984-1996. To utilize the maps appropriately, such managers could benefit from concrete knowledge of the data limitations of the USGS contouring of saturated thickness or transmissivity. In particular, a knowledge of the data accuracy can help determine the kind of model that should be used for a given water resource management task (Bates and Evans, 1996), or it would can help define the uncertainty existing in a given town's stratified-drift aquifer map. However, no such accuracy assessment has been performed to date.

## Research Direction

Given the importance of stratified-drift aquifers as productive groundwater resources, the relative scarcity of these resources, and the need for good management decisions on local, state and federal levels, the specific objective of this research is to quantify the classification accuracy of the stratified-drift saturated-thickness maps.

## Literature Review

## Spatial Error Analysis

A useful way to organize thinking about error in spatial datasets is to view the dataset as having a life cycle. This life cycle consists of a series of processes starting with data collection and continuing through to final archive of the product (Figure 28). This model allows error/accuracy assessment to be viewed as an integral part of each process in the life cycle (Goodchild, 2000). From Goodchild's perspective, accuracy is a dynamic property of the life cycle, and as such, requires effective transport of metadata (data about the dataset) when the dataset is transferred to different custodians.

While Goodchild's dataset life cycle is a solid, general model, it applies only to a single dataset. Derivative datasets (i.e. derived from multiple GIS data layers) have a somewhat different life cycle (Figure 29). Such products involve no direct data collection, no direct accuracy assessment, and begin existence as a distinct dataset at the time of analysis (Step VI). In addition, each source-layer contributes its own error to the derivative product. In Figure 29, organizations rather than individuals are indicated as custodians since multiple individuals within an organization can have responsibility for an original dataset (as in Figure 28). In any case, typically the originating organization holds responsibility for maintaining the accuracy of its datasets.

## Custodian



Figure 28. The life cycle of a natural resource database.
(Source: Goodchild, 2000)


Figure 29. Life cycle of a derivative map, developed from multiple original layers.
(Source: Adapted from Goodchild, 2000)

Lewis and Hutchinson (2000) observed that all spatial datasets contain both spatial and attribute errors, and that spatial errors can vary significantly in size as a function of dataset scale. In addition, both spatial and attribute errors are often spatially auto-correlated. Finally, where continuous spatial variation is represented on a grid or lattice or as a set of contours, there is residual attribute error. In light of these and other errors that can occur in spatial datasets, Lewis and Hutchinson argue that knowledge of whether a dataset has sufficient quality for its intended use is as important as its absolute accuracy.

In the book, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (Congalton and Green, 1999), the authors present the error matrix as a primary analysis tool for classification errors in remote sensing. This tool allows one to distinguish the producer's accuracy and the user's accuracy; to analyze errors of commission and omission, and allows the option of performing further statistical analysis. While designed with raster data in mind, it can also be used for examining error in discretized vector map-data as well (i.e. residual attribute error). Consequently, such an approach can be used to evaluate the accuracy of contoured transmissivity, saturated thickness, or water level data, provided sufficient independent verification points exist.

Review of the literature for accuracy assessments performed on large heterogeneous areas of mapped transmissivity or saturated thickness revealed little. Copty and Findikakis (1998) used a Monte Carlo method to predict a
hydraulic-conductivity field based on limited existing data, leading to subsequent use of a series of groundwater flow and contaminant transport runs to quantify estimates of uncertainty in groundwater-remediation schemes. Kupfersberger and Bloschl (1994) examined the potential to use cokriging of abundant saturated-thickness data to augment limited transmissivity data; a concept which may prove useful in future updates of the USGS aquifer data. To make use of spatial uncertainty, Vassolo et al. (1998) used Monte Carlo methods to simulate realizations of aquifer recharge and transmissivity. For each realization, particle tracking was used to delineate the capture zone. Superpositioning of the set of resulting capture zones was used to define the wellhead protection area.

Where this research will, augment the prior research of Chapter I into remaining stratified-drift aquifer with potential for serving as large water supplies (Lough, 2006), key terms and results are briefly reviewed.

In the prior work, OSDA150 referred to Original Stratified-Drift Aquifer (OSDA) delineated by the USGS as having a transmissivity of at least $2000 \mathrm{ft}^{2} / \mathrm{d}$, respectively. The numeric suffix " 150 " indicated that a transmissivity of $2000 \mathrm{ft}^{2} / \mathrm{d}$ had been related to potential well yield of 150 gpm , based on a relationship derived from Krasny, 1993. This well yield was intentionally described as potential since. by necessity, the analysis did not account for water availability, contributing areas, boundary conditions, or errors resulting from spatial interpolations. The potential well yields determined which state-required sanitary
protective radius should be used for locating a new well (e.g. 400 ft from cultural features, if one were to locate a 150 gpm water-supply well on OSDA150 (NHDES), 1995; NHDES, 1999a; NHDES, 1999b; NHDES, 2005). These setbacks, plus others for surface water, and for potential or known contamination sites deemed a significant health hazard (e.g. septage-sludge lagoons), were spatially overlain to preliminarily determine the remaining OSDA150 area available for locating future large water-supply wells (RSDA150). From the analysis, OSDA was found to occupy just $13.4 \%$ of NH. OSDA150, those areas having the highest transmissivities, covered just $1.8 \%$ of NH area. Of this subset, $71.8 \%$ had been lost (OSDA150L) as of 2000, leaving $28.2 \%$ remaining as RSDA150 (Figure 15).

## High Transmissivity ( $\mathrm{T} \geq 2000 \mathrm{ft}^{2} / \mathrm{d}$ or RSDA150) Stratified-Drift Aquifer in NH as of 2000


1.8\% NH
28.2\% Remaining
71.8\% Lost

Figure 30. Uplands, OSDA, OSDA150 as a percent of New Hampshire's area. OSDA150 is the highest transmissivity subset ( $\mathrm{T} \geq 2000 \mathrm{ft}^{2} / \mathrm{d}$ ) of OSDA. As of 2000, 71.8\% of OSDA150 had been lost to setbacks (OSDA150L), leaving 28.2\% available (RSDA150).

## Methods

## Method Overview

From hereon-in, the term "saturated thickness" will be used interchangeably with its common algebraic symbol, "b". The term "b-interval" refers to the standard saturated-thickness contour-intervals of 20 ft or 40 ft . The term "bclass" refers to classifications of saturated thickness (e.g. 0-20 ft or 100-120 ft).

The objective of this final chapter is to quantify the classification accuracy of the stratified-drift saturated-thickness maps. This was achieved by constructing error matrices similar to Table 25, based on well logs archived by the New Hampshire Geological Survey, and water tables determined from 1:24000 topographic maps.

| USGS Mapped Saturated Thickness | Classed Saturated Thickness (ft) in Verification Well |  |  |  | Row Totals | User Accuracy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-40 | 40-80 | 80-120 | 120-160 |  |  |
| 0-40 ft | $\mathrm{N}_{11}$ | $\mathrm{n}_{12}$ | $\mathrm{n}_{13}$ | $\mathrm{n}_{14}$ | $\Sigma \mathrm{n}_{1 \mathrm{j}}$ | ${ }_{1 / \Sigma n_{1 j}}$ |
| 40-80 | $\mathrm{N}_{21}$ | $\mathrm{n}_{22}$ | $\mathrm{n}_{23}$ | $\mathrm{n}_{24}$ | $\Sigma \mathrm{n}_{2 \mathrm{j}}$ | $\mathrm{n}_{22} / \Sigma \mathrm{n}_{2 \mathrm{j}}$ |
| 80-120 | $\mathrm{N}_{31}$ | $\mathrm{n}_{32}$ | $\mathrm{n}_{33}$ | $\mathrm{n}_{34}$ | $\Sigma \mathrm{n}_{3 \mathrm{j}}$ | $\mathrm{n}_{33} / \Sigma \mathrm{n}_{3 \mathrm{j}}$ |
| 120-160 | $\mathrm{N}_{41}$ | $\mathrm{n}_{42}$ | $\mathrm{n}_{43}$ | $\mathrm{n}_{44}$ | $\Sigma \mathrm{n}_{4 \mathrm{j}}$ | $\mathrm{n}_{44} / \Sigma \mathrm{n}_{4}$ |
| Column Totals | $\Sigma \mathrm{n}_{\mathrm{i} 1}$ | $\Sigma \mathrm{n}_{\mathrm{i} 2}$ | $\Sigma \mathrm{n}_{\mathrm{i} 3}$ | $\Sigma \mathrm{n}_{\text {i4 }}$ | $\Sigma \Sigma \mathrm{n}_{\mathrm{ij}}$ |  |
| Producer Accuracy | $\mathrm{n}_{11} / \Sigma \mathrm{n}_{\mathrm{i1}}$ | $\mathrm{n}_{22} / \Sigma \mathrm{n}_{12}$ | $\mathrm{n}_{33} / \mathrm{L} \mathrm{n}_{\mathrm{i} 3}$ | $\mathrm{n}_{44} / \Sigma \mathrm{n}_{\mathrm{i} 4}$ | $\begin{array}{r} \text { Overa } \\ \left(\mathrm{n}_{11}+\mathrm{n}_{22}\right. \end{array}$ | Accuracy $\left.\mathrm{n}_{33}+\mathrm{n}_{44}\right) / \Sigma \Sigma \mathrm{n}_{\mathrm{ij}}$ |

Table 25. A sample error matrix to compare USGS interpolated saturated thickness against classed saturated-thickness values of verification wells for study areas having a standard 40 ft saturated-thickness contour-interval.

## TCHH3 Data Sources

The following Geographic Information System (GIS) data layers were utilized:

- A 1:24000 GIS layer of stratified drift aquifer boundaries for the state of New Hampshire, assembled from the 13 separate USGS study areas, and obtained from the USGS
- A 1:24000 saturated-thickness GIS layer for the state of New Hampshire, assembled from 13 separate study areas, obtained from the USGS and GRANIT, the NH state GIS data repository
- 45039 georeferenced well points and driller logs, obtained from the New Hampshire Geological Survey
- USGS raster graphics of the 7.5 minute topographic quadrangles in NH , acquired from GRANIT, the NH state GIS data repository


## TCHH3 Data Preparation

Initial quality-control checks of the GIS layers corrected a number of errors, which included:

- Study area boundaries that were slightly misaligned in space (e.g. Nashua Region Planning Commission study area).
- Georeferenced well positions residing outside the state.


## TCHH3 GIS Operations

All GIS operations were carried out in arcGIS 9.0 (ESRI, 2004). All datasets utilized NAD 1983 State Plane Feet for New Hampshire FIPS zone 2800 as a coordinate system.

Of the 45039 georeferenced wells, 10446 wells were identified by GIS overlay as
residing on stratified-drift aquifer as delineated in the 13 USGS stratified-drift study areas. Of these, 2385 met the following criteria:

- to have been drilled after completion of the USGS studies
- to have a defined (as opposed to Unknown) transmissivity range (i.e. Wells areas could not be located in areas where the USGS had not defined transmissivity. See Chapter I, Table 6)
- to have a defined saturated thickness
- to have depth to bedrock data greater than 10 ft
- to have been located by field verification

Subsequent review revealed considerable clustering that resulted from the field geo-referencing process (e.g. entire sub-divisions had been located at the same time). To reduce spatial auto-correlation, the wells were then re-sampled to ensure a minimum distance of 1000 feet between points. Subsequent to this, land surface and water table elevations were interpolated manually within the GIS environment, based on the USGS 7.5 minute quadrangles and USGS water table contours. An additional 206 wells were subsequently eliminated due to insufficient contour data or surface water evidence for calculating a water table value, or for acquiring a saturated-thickness class. Of the remaining verification wells, 186 consisted of $100 \%$ till (i.e. not stratified drift), while 91 wells were identified as having basal tills, which required obtaining depth-to-till data from NHGS to calculate saturated thickness (as explained in the following section). Prior to actually calculating the saturated thickness for the verification wells, the
set was subjected to a rigorous quality control process that included:

- Correction of elevation label errors in USGS 7.5 min topographic maps
- Screening of well location errors as determined through attribute data
- Screening of calculations for anomalous values (e.g. depth to water table)
- Screening for appropriate use and conversion of land elevation contours and water table contours. (USGS elevation contour intervals varied among 10, 20 and 40 ft for standard quadrangles and between 3 and 6 m for metric quadrangles. USGS water tables were always expressed in ft.)
- Comparison between driller logged elevation and calculated elevation
- Recalculation of land elevation and water table and comparison to the original calculations

Upon completion of this screening, the final set of verification wells contained 1300 locations, of which 1114 were (non-till) stratified-drift wells, for which saturated thickness was subsequently calculated.

## TCHH3 Calculation of Saturated Thickness

The saturated thickness of a stratified-drift aquifer is defined as the difference between the water table and the bottom of the aquifer, whether bedrock or the top of a basal till. (Moore et al. 1994) (Figure 31).


Figure 31. Saturated thickness is the depth of the saturated portion of a stratified drift overburden formation. The bottom of the aquifer can be bedrock or basal till.

To calculate saturated thickness, the depth to the water table is subtracted from depth to bedrock, or from depth to basal till, if one existed (Equations 4 and 5).

$$
\begin{aligned}
b & =\min \left(D_{b k}-D_{w t}\right),\left(D_{b t}-D_{w t}\right) & & \text { Equation 1 } \\
& =\min \left[\left(D_{b k}-\left(E_{l s}-E_{w t}\right)\right),\left(D_{b t}-\left(E_{l s}-E_{w t}\right)\right)\right] & & \text { Equation } 2
\end{aligned}
$$

where

$$
\begin{aligned}
& b=\text { saturated thickness }(\mathrm{ft}) \\
& D_{\mathrm{bk}}=\text { depth to bedrock below ground surface }(\mathrm{ft} \mathrm{bgs}) \\
& D_{\mathrm{wt}}=\text { depth to the water table below ground surface }(\mathrm{ft} \mathrm{bgs}) \\
& D_{\mathrm{bt}}=\text { depth to the basal till below ground surface }(\mathrm{ft} \mathrm{bgs}) \\
& E_{\mathrm{ls}}=\text { land surface elevation }(\mathrm{ft} \mathrm{msl}) \\
& E_{\mathrm{wt}}=\text { water table elevation }(\mathrm{ft} \mathrm{msl})
\end{aligned}
$$

Finally, the dataset was reviewed a last time to identify and verify the nature of unusual values of this variable. As a caveat, it should be noted that errors in horizontal and vertical accuracy of map derived water table and well elevation washed out for any given well. Inaccuracies in actual location, or in driller-logged depth to bedrock or depth to till were ignored out of practicality.

Upon this, semi-variogram analyses were performed within arcGIS for calculated b-values of the 1114 non-till subset, and for a dense well subset (NRPC, 273 wells). Using a variety of lag distances and search directions, both analyses generated pure nugget results. Consequently, it was concluded that no spatial autocorrelation existed for the calculated saturated-thickness samples, or that if a spatial autocorrelation existed it was too weak to detect. Thus, the minimum sampling distance of 1000 feet between points was validated as having been effective in reducing spatial autocorrelation,

With quality control checks complete, each well was associated within arcGIS to a mapped saturated-thickness class. Subsequently, an actual b-class was assigned for the well, based on the mapped saturated-thickness contours used in the vicinity of the well. Table 26 details the mapped b-intervals that were used, in addition to the contouring exceptions in each study area.
\(\left.$$
\begin{array}{|c|l|c|c|c|}\hline \text { ID } & \text { USGS Study Area } & \begin{array}{c}\text { Standard ST } \\
\text { Interval (ft) }\end{array} & \begin{array}{c}\text { Class } \\
\text { Exceptions }\end{array}
$$ \& Comment <br>
\hline 1 \& Upper Connecticut River \& 40 \& \& <br>
2 \& Middle Connecticut River \& 40 \& 0-20 \& 20-40 <br>
3 \& Numerous <br>
4 \& Pemigewasset River \& Saco River \& 40 \& <br>
5 \& 20 \& \& \& <br>
5 \& Lake Winnipesaukee \& 40 \& \& <br>
7 \& Lower Connecticut River \& 40 \& \& <br>
8 \& Contoocook River \& Upper Merrimack River \& 20 \& <br>
9 \& Bellamy/Cocheco/Salmon Falls R \& 20 \& 0-10 \& 10-20 <br>
10 \& Middle Merrimack River \& 20 \& \& <br>
11 \& Exeter/Lamprey/Oyster Rivers \& 20 \& \& <br>
12 \& Lower Merrimack River \& 20 \& 0-10 \& 10-20 <br>

13 \& Nashua Regional Planning Comn \& 20 \& 0-10 \& 10-20\end{array}\right)\) Fewmerous |  |
| :--- |

Table 26. USGS stratified-drift aquifer study areas, their numeric ID, mapped saturated-thickness contour-intervals, interval-class exceptions and comments on those exceptions.

Figure 32 depicts the same information visually. Study areas that utilize the standard 20 ft saturated-thickness contour-interval resided in the South-central and southeastern areas of the state. Study areas utilizing the standard 40 ft saturated-thickness contour-interval resided in the southwestern and northern portions of the state.


Figure 32. Mapped saturated-thickness contour-interval classes for the 1300 verification wells. b-Interval $=10 \mathrm{ft}$ implies the given well had either a 0-10 or 1020 ft classification in a study area with a standard 20 ft b-interval.

## Results

## Saturated-Thickness Interval Error-Matrices

Tables 27A and 27B present error matrices for studies with standard 20 ft and 40 ft saturated-thickness contour-intervals. The seven USGS study areas using a 20 ft contour interval were the Lower Merrimack, Middle Merrimack, Upper Merrimack, Lamprey/Exeter/Oyster, Bellamy/Cocheco/Salmon Falls, Nashua Regional Planning Commission and Winnipesaukee. The Nashua Regional Planning Commission study routinely included 0-10 and 10-20 ft b-classes, while the Lower Merrimack and Bellamy/Cocheco/Salmon Falls studies occasionally included those intervals.

The six USGS study areas using a 40 ft contour-interval were the Lower Connecticut, Middle Connecticut and Upper Connecticut, Pemigiwasset, Contoocook and Saco. However, the Middle Connecticut Study included numerous 0-20 and 20-40 ft saturated-thickness contours, which were also used by the 20 ft b-interval studies.

With 674 and 626 wells respectively, the 20 ft and 40 ft b-interval error matrices contained roughly an equal number of samples. Each matrix cell of the two matrices contains a count of verification wells that fell into the cell's mapped bclass and actual b-class.

The tables identify three kinds of saturated-thickness classification errors:

1) Saturated thickness was under-classed. b was greater than mapped and available water may be greater than thought. This is a desirable error.
2) A well's saturated thickness was over-classed. b was less than mapped, and less water might be available than thought. This is an undesirable error.
3) A well's overburden was delineated as stratified drift when it was actually till. While such a well often has a saturated overburden, it is highly unlikely to have a high water yield. In this circumstance, the well was considered over-classed. This is also an undesirable error.

In the error matrices, the correctly-classed values of each matrix appear in the diagonal, formatted in gray background. Counts of verification wells that were under-classed appear to the upper right of the diagonal, while those over-classed appear to the lower left of the diagonal. Each under-classed and over-classed cell has a color-coded background to indicate the number of class intervals from the diagonal, providing a sense of the magnitude of the classification discrepancies. Wells that proved to be actually till appear in the first class on the left. In alignment with the USGS stratified drift studies, the aquifer, itself, is defined as the stratified-drift formation, whether saturated or not. Consequently, of the 111 unsaturated wells, those that had been mapped to b-classes $0-10,0-$ 20 or 0-40 ft, were considered to have been appropriately classed.

| A | Error Matrix for $20 f t$ Saturated-Thickness Interval Studies |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mapped | Actual Saturated-Thickness (ft) Class |  |  |  |  |  |  |  |  |  |  |  |  |  | Total Wells | User <br> \%Acc |
| b-Class | Till | 0-10 | 10-20 | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 | 200-220 |  |  |
| 0-10 | 14 | 72 | 25 | na | 24 | 8 | 5 | 1 | 1 |  |  |  |  |  | 150 | 48.0 |
| 10-20 | 7 | 19 | 15 | na | 21 | 9 | 3 | 2 | 1 |  |  |  |  |  | 77 | 19.5 |
| 0-20 | 58 | na | na | 86 | 46 | 28 | 11 | 6 |  | 1 |  |  |  |  | 236 | 36.4 |
| 20-40 | 8 | 9 | 6 | 19 | 31 | 19 | 12 | 1 |  | 1 |  | 1 |  |  | 107 | 29.0 |
| 40-60 | 3 | 3 | 2 | 6 | 17 | 12 | 9 | 4 | 3 | 1 |  |  |  |  | 60 | 20.0 |
| 60-80 | 1 |  |  | 3 | 4 | 7 | 10 | 1 | 1 |  |  | der-classed |  | 1 | 28 | 35.7 |
| 80-100 | 3 |  |  |  |  | 1 | 1 | 1 | 1 | 1 |  |  |  |  | 8 | 12.5 |
| 100-120 |  |  |  |  |  |  | 1 |  |  | 1 |  | 1 |  |  | 3 | 0.0 |
| 120-140 |  |  |  |  |  |  |  | 3 | 1 |  |  |  | 1 |  | 5 | 0.0 |
| 140-160 |  |  |  |  | ver-cla |  |  |  |  |  |  |  |  |  | 0 | na |
| 160-180 |  |  |  |  |  |  |  |  |  |  |  | Correctly- |  |  | 0 | na |
| 180-200 |  |  |  |  |  |  |  |  |  |  |  |  | classed |  | 0 | na |
| 200-220 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | na |
| Total | 94 | 103 | 48 | 114 | 143 | 84 | 52 | 19 | 8 | 5 | 0 | 2 | 1 | 1 | Wells | 674 |
| Producer \%Accuracy | 0.0 | 69.9 | 31.3 | 75.4 | 21.7 | 14.3 | 19.2 | 5.3 | 0.0 | 0.0 | na | 0.0 | 0.0 | 0.0 | Overall Accuracy | 33.7\% |

120


Table 27A and Table 27B. The 20 ft and 40 ft b-interval saturated thickness error matrices for the 13 USGS study areas.

## Discussion

Tables 27A and 27B reveal that the saturated-thickness overall class-accuracies are $33.7 \%$ and $42.5 \%$ for the 20 ft and 40 ft b-interval studies, respectively.

## Map-User Accuracy and Class Offsets

In the error matrices, map-user accuracy is the percent of correctly-classed verification wells relative to the total wells in a given mapped b-class.


Figure 33. Map-user accuracies by mapped b-class (ft).
Figure 33 compares map-user accuracies of the 40 ft b-interval study areas with those of the 20 ft b-interval study areas, after reclassification for comparison. Comparing classes reveals that the 40 ft b-interval map-user accuracies were between 4 and 30 percentage points more accurate. In addition, map-user accuracies decreased with increasing saturated-thickness class for both binterval studies. Map-user accuracy is greatest in the lowest classes (under 40
ft ) which contain large portions of the data, as reflected in the median values of Table 28.

| Statistics for 1003 Positive Saturated Thickness Wells |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| b-Interval | Wells | Min (ft) | Max (ft) | Mean (ft) | Median (ft) |
| 20ft | 503 | 0.3 | 214.4 | 35.3 | 27.4 |
| 40ft | 500 | 0.1 | 250.0 | 60.5 | 47.8 |

Table 28. Summary statistics for the 1003 verification wells having positive (>0) saturated thickness values.

Figure 33 also reveals that map-user accuracy approached zero above 140 ft for the 20 ft b-interval studies, and above 180 ft for the 40 ft b-interval, respectively.

To further examine the accuracy decay with increasing b-value, exceedance probabilities were generated for the non-till verification wells of the 20 ft and 40 ft b-interval study areas.


Figure 34. Exceedance probabilities for the USGS study areas having 20 ft and 40 ft saturated-thickness intervals. 186 wells consisting of $100 \%$ till have been removed from consideration in this analysis. 111 wells had a negative saturated thickness, indicating a water table that was below the top of till or top of bedrock elevation.

Figure 34 demonstrates that in the 20 ft and 40 ft b-interval distributions, less than $5 \%$ of b-values equal or exceed 83 ft and 160 ft , respectively. As a result, wide-area spatial interpolations of $b$ will more reflect higher-frequency, shallower b-values, thus creating accuracy decay with increasing b. In addition, with increasing mapped-b, over-classification dominates under-classification (Figure 35 and Figure 36). These observations all suggest that the deeper sand and gravel wells are infrequent, hard to locate, and tend to be somewhat overclassed in USGS saturated-thickness maps, especially in the midrange.


Figure 35. Wells over-classed and under-classed by class for the 20 ft b-interval USGS studies. The 0-10 and 10-20 classes are included in the 0-20 class.


Figure 36. Over-classed and under-classed wells for the 40 ft b-interval USGS studies. The 0-20 and 20-40 classes are included in the 0-40 class.


Figure 37. The class-offset analysis for 20 ft b-interval studies.

Figure 37 depicts the class-offset analyses for the seven 20 ft b-interval study areas. The class-offsets of the 674 verification wells form an approximate normal distribution around the correctly-classed category "0". 33.7\% were correctly classed, while $29.1 \%$ were over-classed, and $37.2 \%$ were under-classed. Consequently, $70.9 \%$ of the wells equaled or exceeded their mapped class of $b$. Figure 37 also reveals that till comprises about 50\% of the first offset overclassification category. About 13.9\% of the 674 wells were comprised of till.

Considering accuracy and precision as distinct in the scientific sense, Figure 37 reveals that the saturated-thickness contours of the 20 ft b-interval studies are accurate, but imprecise.


Figure 38. The class-offset analysis for the 40 ft b-interval studies.

Figure 38 depicts the class offsets for the 40 ft b-interval study areas. As in Figure 37, the class-offsets of the 626 verification wells form an approximately normal distribution around the correctly-classed category "0". In this case, 42.5\% were correctly classed, while $24.6 \%$ were over-classed, and $32.9 \%$ were underclassed. Consequently, $75.4 \%$ of the wells equaled or exceeded their mapped class of b. Similar to Figure 37, $14.7 \%$ of the 626 wells were classed as till, with the majority included in the first offset over-classification category. In addition, Figure 38 also reveals that like the 20 ft b-interval studies, the saturatedthickness contours of the 40 ft b-interval studies are accurate, but imprecise.

## Transmissivity vs. Saturated-Thickness

Table 29 and Table 30 contain the saturated-thickness error matrices for the 268 and 1032 wells that mapped to $T \geq 2000 \mathrm{ft}^{2} / \mathrm{d}$ (High-T) and $\mathrm{T}<2000 \mathrm{ft}^{2} / \mathrm{d}$ (Low-T), respectively. The well data for the 20 ft and 40 ft b-Interval study areas have been integrated such that the likelihood of higher yield generally increases with increasing saturated thickness. However, this likelihood is not a certainty for any individual well since the transmissivity is the product of hydraulic conductivity and saturated thickness, and the hydraulic conductivity for any given well is usually not known.

Table 29 and Table 30 reveal that wells mapped to high transmissivity are less accurately b-classed than those mapped to low transmissivities ( $32.1 \% \mathrm{vs}$. 39.4\% overall accuracies). The Under/Over-classification analyses suggest that the saturated thickness of wells mapped to high and low transmissivities will be correctly classed or under-classed $60.1 \%$ and $76.5 \%$ of the time, respectively. Generally, high-transmissivity wells are more commonly over-classed (39.9\%), while low-transmissivity wells are more commonly under-classed (23.4\%). Wells that have over-classed saturated thickness may have overstated transmissivities. Wells that have under-classed saturated thickness may have understated transmissivities.


Table 29. The saturated-thickness error-matrix for wells that mapped to transmissivity greater than or equal to $2000 \mathrm{ft}^{2} / \mathrm{d}$.


Table 30. The saturated-thickness error-matrix for wells that mapped to transmissivity less than $2000 \mathrm{ft}^{2} / \mathrm{d}$.

## Mazzafero Analyses of b-Sufficiency for Sustained Yields

To infer the transmissivity subsets that might have insufficient or sufficient saturated thickness to sustain yields of 75 or 150 gpm , the 1300 verification wells were mapped within GIS to associated minimum and maximum transmissivities, $T_{\text {min }}$ and $T_{\text {max }}$.

Initially, to evaluate the representativeness of the 1300 sample wells for OSDA subsets, plots were generated of log \%1300 wells versus the log \%area for Tclasses of OSDA, Low-T RSDA75, (OSDA<75 after water quality setbacks), RSDA75, Low-T RSDA150 (OSDA<150 after water quality setbacks), and RSDA150 in NH (Figure 39, Figure 40 and Figure 41). All datasets exclude $134.5 \mathrm{mi}^{2}$ of OSDA for which the USGS transmissivity was undefined, and two negligible transmissivity ranges ( $T \geq 3000 \mathrm{ft}^{2} / \mathrm{d}$ and $T \geq 6000 \mathrm{ft}^{2} / \mathrm{d}$ ) which had no sample wells as a result.

Review of the plots reveals that while a small bias is evident towards higher transmissivities, the well sample subsets are reasonably representative of the transmissivity-range areas in NH , and therefore the well percentages can be used to draw inferences regarding the above T-class subsets.


Figure 39. Evaluation of the representativeness the 1300 verification wells of the stratified-drift aquifer originally delineated by the USGS (OSDA).


Figure 40. Evaluation of the representativeness for RSDA75 and Low-T RSDA75. Note that the $\mathrm{T}=3000-4000 \mathrm{ft} 2 / \mathrm{d}$ class is of negligible area in comparison to other T-classes.


Figure 41. Evaluation of the representativeness of verification wells for RSDA150 and Low-T RSDA150. Note that the T=3000-4000 ft2/d class is of negligible area in comparison to other T-classes.

## TCHH3 The Mazzafero Transmissivity-Yield Equation

In 1980, the USGS developed a relationship for approximating stratified-drift aquifer (SDA) well yield for mapped stratified-drift aquifers (Mazzaferro, 1980) (Equation 3).

$$
Q=T^{*} b_{T} / c
$$

## Equation 6

where

Q = Mazzaferro potential well yield (gpm)
$\mathrm{T}=$ Transmissivity ( $\mathrm{ft}^{2} / \mathrm{d}$ ) mapped for a region
$\mathrm{b}_{\mathrm{T}}=$ Saturated thickness (ft) mapped for the given transmissivity T
c $=$ conversion constant, $750\left(\mathrm{ft}^{3} / \mathrm{d} / \mathrm{gpm}\right)$

The Mazzaferro relationship is somewhat more flexible than the Krasny equation used in Chapter I (Equation 1) since that it utilizes two USGS mapped variables ( T and b) rather than 1 (i.e. T ), to estimate general aquifer yields. Since transmissivity is the product of hydraulic conductivity and saturated thickness, the true independent variables are K and b when the equation is expressed as:

$$
\mathrm{Q}=\mathrm{K}^{*}\left(\mathrm{~b}_{\mathrm{T}}\right)^{2} / \mathrm{c}
$$

## Equation 7

where
$\mathrm{K}=$ hydraulic conductivity (ft/d)
$Q, b_{T}$ and $c$ are defined as above

The Mazzaferro equation will result in the same pumping yield as the Krasny
equation when saturated thickness $=55.2 \mathrm{ft}$ (Figure 42). Lower saturated thickness results in lower yield estimates than the Krasny equation. Higher saturated thickness results in greater yield estimates than the Krasny equation.


Figure 42. Theoretical yields of the Krasny and Mazzaferro equations by saturated thickness.

This study assumes that under ideal conditions (i.e. no error in mapped bor $T$ ), the two-variable Mazzaferro equation is more accurate than the one-variable Krasny equation. Given this, the Mazzaferro equation was used in conjunction with the quantified accuracies of saturated-thickness maps, to refine Chapter I estimates of remaining stratified-drift aquifer having potential to yield 150 gpm (Lough, 2006).

Solving Equation 3 for the saturated thickness gives:

$$
\mathrm{b}_{\mathrm{T}}=750 \text { * } \mathrm{Q} / \mathrm{T}
$$

## Equation 8

Substituting the minimum ( $\mathrm{T}_{\min }$ ) and maximum ( $\mathrm{T}_{\max }$ ) transmissivities of each well into the equation results in upper and lower threshold saturated-thickness values.

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{T} \min }=750 * \mathrm{Q} / \mathrm{T}_{\min } \\
& \mathrm{b}_{\mathrm{T}_{\max }}=750 * \mathrm{Q} / \mathrm{T}_{\max }
\end{aligned}
$$

## Equation 9

Equation 10


Between these threshold values (i.e. for transmissivities $\left\{T: T_{\min }<T \leq T_{\max }\right\}$ ), a well has sufficient saturated thickness, not to be ruled out as possibly sustaining a given yield, Q , under the assumptions of the Mazzaferro equation.

In addition, to the above equations, as a rule, saturated-thickness values of 40 ft or greater have the best potential to achieve sustained high-yields (Mazzaferro, 1980). Furthermore, unsaturated wells, or wells with overburden consisting of low hydraulic-conductivity deposits (e.g. 100\% till, 100\% clay) are highly unlikely to sustain a high yield. Based on the Mazzaferro equation and these observations, criteria were developed to generate four subsets of well-likelihood to sustain high-yields (Table 31).

## Criteria for Four Categories of Well Likelihood To Sustain a Long-Term Yield Q

| Unlikely | Less Likely | Likely | More Likely |
| :---: | :---: | :---: | :---: |
| 100\% Till or 100\% Clay or Unsaturated or ( $\mathrm{b}<\mathrm{b}_{\text {Tmax }}$ ) | $\mathrm{b} \mathrm{Zb}_{\text {Tmax }}$ <br> and $b<40$ | $\begin{aligned} & \mathrm{b}_{T_{\text {max }}} \leq \mathrm{b}<\mathrm{b}_{\text {Tmin }} \\ & \text { and } \mathrm{b} \geq 40 \end{aligned}$ | $\begin{gathered} b \geq b_{\text {Tmin }} \\ \text { and } b \geq 40 \end{gathered}$ |

Table 31. Criteria of 4 classes of well-likelihood to sustain a long term yield, Q, given $\left\{T: T_{\text {min }}<T \leq T_{\max }\right\}$,

For each well in the two transmissivity subsets (Low $T$ : $T<2000$, High $T: T \geq 2000$ ), actual saturated thickness and overburden composition were screened to the criteria of Table 31 for a desired yield of 150 gpm . Table 32 contains the resultant matrix of 1300 verification wells classed by mapped transmissivity and actual saturated thickness. Note that unsaturated wells and 100\% clay wells have been integrated with till in the leftmost class. Perpendicular dashed lines divide the matrix into high and low transmissivity, and saturated thickness above and below 40 ft . Gray shades delineate the regions in which the Mazzaferro equation is satisfied for $Q \geq 150 \mathrm{gpm}$. For comparison, the gray-shading in Table 33 delineates the region in which the simpler Krasny equation (used in the research of Chapter I) is satisfied for $Q \geq 150$.

Table 34 and Table 35 summarize verification-well percentages for the Low-T RSDA150/75 and RSDA150/75 subset elements within transmissivity/saturatedthickness matrices. The four classes of likelihood are general estimates only. Exceptions to every category can be expected, since the hydraulic conductivity is unknown for any well, and errors exist in overburden notes of the well logs.


Table 32. Verification wells classed by transmissivity and actual saturated thickness. Unsaturated or 100\% clay wells have been integrated with the till class to the left. Values for $b_{T \max }$ and $b_{T \text { min }}$ are displayed in the left columns. Assuming $\{T$ : Tmin $\leq T<T m a x\}$, the approximate ranges of classes satisfying the Mazzaferro equation for $\mathrm{Q} \geq 150$ gpm are grayshaded. Empty columns are not displayed. Transmissivities of " 0 " or " 99999 " are replaced with " 1 " and " 10,000 ", for calculations.


Table 33. The Krasny-derived OSDA and RSDA subsets of the T/b matrix. For comparison to Table 34 and Table 35, the dark-gray shaded area represents those transmissivities that have the potential to yield 150 gpm or greater under the simpler Krasny-derived transmissivity-yield relationship used in Chapter I. Together, the light and dark gray shaded areas represent those transmissivities that have the potential to yield 75 gpm or greater under the Krasny relationship used in Chapter I. The statistics developed for each of the four models apply equally to OSDA and RSDA subsets.


Table 34. General matrix subsets of likelihood for sufficient saturated thickness to sustain $Q=150 \mathrm{gpm}$ for the 1300 well transmissivity/saturated-thickness class matrix. The $\mathrm{b}_{T \max }$ and $\mathrm{b}_{\mathrm{Tmin}}$ curves are approximate and unusually shaped due to overlapping class boundaries. The curves are also specific to the Mazzaferro equation for $\mathrm{Q}=150 \mathrm{gpm}$.


Table 35. Mazzaferro-based saturated thickness sufficiency estimates for Krasny-based RSDA75 and for Low-T RSDA75 (OSDA<75 remaining after 75 gpm water-quality setbacks). The $b_{T m a x}$ and $b_{T \min }$ curves are approximate and unusually shaped due to overlapping class boundaries. The curves are also specific to the Mazzaferro equation for $\mathrm{Q}=75 \mathrm{gpm}$.

| MazZaferro-Updated OSDA/RSDA StatisticS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aquifer Subset | T-Range | Area (mi2) | b-Sufficiency <br> Factor | Updated <br> Area (mi2) | \%osDA | Low-T + High-T <br> NH RSDA75 |  |
| 2000 RSDA75 | Low-T | 366.8 | 0.210 | 77.0 | $6.2 \%$ |  |  |
| High-T | $\mathbf{1 1 8 . 4}$ | 0.463 | $\mathbf{5 4 . 8}$ | $\mathbf{4 . 4 \%}$ | 131.9 | $10.6 \%$ |  |
| 2025 RSDA75* | High-T | 111.3 | 0.463 | 51.5 | $4.1 \%$ | - |  |
| 2000 RSDA150 | Low-T | 368.7 | 0.109 | 40.2 | $3.2 \%$ |  |  |
| High-T | $\mathbf{4 7 . 6}$ | 0.519 | $\mathbf{2 4 . 7}$ | $\mathbf{2 . 0 \%}$ | 64.9 | $5.2 \%$ |  |
| 2025 RSDA150* | High-T | 43.5 | 0.519 | 22.6 | $1.8 \%$ |  |  |

Table 36. RSDA75 and RSDA150 after being updated for Mazzaferro likelihood of sufficient saturated thickness to sustain a long-term 75 or 150 gpm well yield, for 2000 and 2025. * There are no Low-T RSDA projections for 2025.

Table 36 details the quantities, the percentages of the high and low transmissivity wells for the subsets of Table 34, and the calculated portions of Low T OSDA (OSDA<150) and RSDA150 that might have sufficient saturated thickness to yield 150 gpm . Table 36 suggests that conservatively, only 24.7 mi $^{2}$ of the 47.6 mi $^{2}$ RSDA150 identified in Chapter I may actually have sufficient saturated thickness to sustain a long term 150 gpm yield. Consequently, the actual amount of RSDA150 appears to be less than previously quantified. While up to $40.2 \mathrm{mi}^{2}$ may be additionally available in low transmissivity areas, such locations will be sparse and may not have sufficient water available in surrounding areas.

Table 36 also suggests that conservatively, only $54.8 \mathrm{mi}^{2}$ of the $118.4 \mathrm{mi}^{\mathbf{2}}$ RSDA75 identified in Chapter I may actually have sufficient saturated thickness to sustain a long term $\mathbf{7 5}$ gpm yield. Consequently, the actual amount of RSDA75 appears to be less than previously quantified. While up
to $77.0 \mathrm{mi}^{2}$ may be additionally available in low transmissivity areas, such locations will be sparse, likely difficult to locate, and would require careful checking of water availability.

From Chapter II, the projected 2025 RSDA75 and RSDA150 for NH can be derived by subtracting projected 2025 OSDA75L and OSDA150L for NH from the known amounts of OSDA75 and OSDA, respectively. Table 36 reveals that the updated estimates of the projected 2025 RSDA75 and RSDA150 for NH are $51.5 \mathrm{mi}^{2}$ and $22.6 \mathrm{mi}^{2}$, respectively. Clearly, the impacts of the Mazzaferro bsufficiency analyses are far greater than the modeled incremental losses due to population growth by 2025.

| Updated 75 GPM FGW Analysis <br> Estimated (mi2) |  |  |  |  | Updated 150 GPM FGW Analysis <br> Estimated (mi2) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Total | Coast | South North | Coast | South North | Total | Type |  |  |
| RSDA75 | 118.4 | 0.7 | 55.8 | 61.9 | 0.1 | 20.0 | 27.5 | 47.6 | RSDA150 |
| Updated <br> RSDA75 | 54.8 | 0.3 | 25.8 | 28.7 | 0.06 | 10.4 | 14.3 | 24.7 | RSDA150 |
| \%NH OSDA | $4.4 \%$ | $0.0 \%$ | $2.1 \%$ | $2.3 \%$ | $0.0 \%$ | $0.8 \%$ | $1.1 \%$ | $2.0 \%$ | \%NH OSDA |

Table 37. Regional estimates of RSDA75 and RSDA150 (Table 12) updated by the b-sufficiency factors determined in Chapter III.

The b-sufficiency analysis of Chapter III also allows updating the regional RSDA estimates of Chapter I. Again, the RSDA estimates for each region drop by about one half. Technically each region should have its distinct b-sufficiency factor; however, such data area not available as yet.

## Chapter III Conclusion

The USGS transmissivity and their underlying saturated thickness maps have served as key references for town and state planners looking to manage water resources in New Hampshire for over a decade. Since, knowledge of the accuracy of these products is essential to using them correctly, this research focused on quantifying the classification accuracy of the USGS saturatedthickness contour maps. To achieve this, a database was developed of 1300 wells that had been located in stratified drift after the USGS maps had been completed. Just over fourteen percent of the wells were found to consist of till as opposed to sand and gravel. Saturated thickness was calculated for the 1114 remaining wells, and error matrices of USGS-mapped saturated-thickness classes vs. actual saturated-thickness classes were constructed and reviewed.

## Analysis of 20 ft and 40 ft b-Interval Error Matrices

Overall accuracy for the 674 verification wells in the 7 USGS aquifer study-areas that utilized a 20 ft saturated-thickness contour-interval was determined to be $33.7 \%$. Overall accuracy for the 626 verification wells in the 6 USGS aquifer study-areas that utilized a 40 ft saturated-thickness contour-interval was determined to be 42.5\%.

In both matrices, integrated map-user accuracies declined from highs of $48 \%$ in the shallowest classes to zero in classes for depths greater than 100 ft and 160 ft for the 20 ft and 40 ft b-interval groups, respectively. Exceedance-probability graphs revealed that wells of these depths were relatively rare, and therefore
were more likely to be difficult-to-contour, local minima in bedrock topography. Consequently, the decline in map-user accuracy with increased depth can be seen as bias of b-contour-maps towards more frequent wells of shallowerbedrock depth. Also, in both matrices, under-classifications exceeded overclassifications for the lowest saturated-thickness classes, while overclassifications exceeded under-classifications in the midrange. Overclassifications were about equal with under-classifications for wells in high-range b-classes.

Class-offset analyses revealed that both the 20 ft and 40 ft b -interval study areas had approximately normal distributions around the correctly classed category. Classification errors extended to plus and minus 5 class-offsets for both well subsets. Based on these observations, the USGS contoured saturated-thickness data can be described scientifically as accurate, but imprecise.

## Mazzafero b-Sufficiency Analysis

While not part of the original research proposal, the saturated-thickness accuracy-assessment was used to refine the current and projected estimates of the RSDA75 and RSDA150 contained in Chapter I and Chapter II. For this purpose, matrices of saturated thickness versus transmissivity range were generated for the 268 and 1032 verification wells having high ( $T \geq 2000 \mathrm{ft}^{2} / \mathrm{d}$ ) and low ( $\mathrm{T}<2000 \mathrm{ft}^{2} / \mathrm{d}$ ) transmissivities, respectively. High-T wells were generally less accurate and more prone to over-classification then low-T wells. Low-T wells were generally more accurate, but more prone to under-classification.

Since the verification wells were found to be generally representative of the transmissivity-range areas in NH for OSDA, RSDA and Low-T RSDA subsets, these data were capable of refining the RSDA estimates of Chapters I and II. This study suggests that roughly one half of the regional RSDA estimates, the current (2000) RSDA and projected (2025) RSDA estimates may have insufficient saturated thickness to sustain a high well yield, based on the Mazzafero yield equation. This research also suggests that some large quantities of OSDA<75 and OSDA<150 remain available after appropriate water quality setbacks, in conjunction with sufficient saturated thickness to yield 75 or 150 gpm . However such areas are likely to be sparse, difficult to locate, and would require careful checking of water availability in surrounding Low-T areas.

## CHAPTER IV

## DISSERTATION CONCLUSION

## Overview

The emerging national water crisis has created a great need to identify and protect future water-supply lands in the more humid areas of the country, including New Hampshire. For this dissertation, three inter-connected research projects have been completed that together examine the present and future availability of the state's most productive groundwater resources, stratified-drift aquifers.

Chapter I documents the development of a GIS-based method for preliminary identification of remaining stratified-drift aquifers having potential to serve as large water supplies. The method first employed aquifer transmissivity classes to crudely approximate potential water yield. After this, contamination setbacks were overlain on the transmissivity classes to sift out the remaining available aquifer areas. This simple approach was chosen over an analytical or numericalmodeling approach due to the regional scope of the study, and a general sense of the accuracy limitations of the USGS-delineated aquifer maps. Once developed, the methodology was applied throughout the state, and the results were summarized, to determine the status of potentially high-yield stratified-drift aquifers by state sub-regions, and by the state as a whole.

Chapter II details the research performed in estimating the further loss of potentially high-yield stratified-drift aquifer by 2025, based on the results of Chapter I. Initially, on-aquifer populations and population trends were summarized, using US Census data for 1990 and 2000. Subsequently, principal components regression was used to determine an equation for aquifer loss by town as a function of aquifer area and the resident aquifer-population as of 2000. This spatial model was then driven through time, out to 2025, for four scenarios of aquifer-population growth, which were based on population projections developed by the New Hampshire Office of Energy and Planning. Scenario B based on historical data was deemed the most probable, and was used to test the research hypotheses.

Chapter III adapted error-matrix analysis, a technique commonly used in remote sensing, to analyze the classification accuracy of the USGS-delineated saturated-thickness maps, which served as a basis for the USGS classed transmissivity maps. Quantifying the accuracy of the saturated-thickness maps like this, provided a sense of the accuracy of the RSDA estimates of Chapter I.

While not part of the original proposed research, the saturated-thickness accuracy-assessment was extended to further bracket the potentially high-yield RSDA results of Chapter I, and to infer the quantity of similar yield areas that might exist in areas of low transmissivity $\left(\mathrm{T}<2000 \mathrm{ft}^{2} / \mathrm{d}\right)$. For this purpose, matrices of saturated thickness versus transmissivity range were generated for
the 268 and 1032 verification wells having high ( $\mathrm{T} \geq 2000 \mathrm{ft}^{2} / \mathrm{d}$, or OSDA150) and Iow ( $\mathrm{T}<2000 \mathrm{ft}^{2} / \mathrm{d}$ ) transmissivities, respectively. The RSDA figures of Chapters I and II were then refined using the Mazzaferro yield equation, and other criteria.

Chapters 1-3 each contain a detailed conclusion. The following section broadly summarizes the key results of the overall dissertation.

## TCHH1 Aquifer Populations

Humans have a tremendous inclination to reside and work on NH's stratified-drift aquifer.

- Approximately 4 in 10 people reside on OSDA, which from an updated assessment, constitutes just 13.4\% of NH.
- $11.4 \%$ of the population in 2000 lived on OSDA75 (3.5\% NH), while 7.3\% of resided on OSDA150 (1.8\% NH), a subset of OSDA75.


## TCHH1 Contamination Sources

Almost 6 in 10 of known and potential contamination sources exist on OSDA. This figure reasonably agrees with the OSDA population statistic above since human impacts include both residential and business development.

## TCHH1 Population Growth 1990-2000

From 1990-2000, Upland populations grew at almost twice the average rate of OSDA populations, reflecting a continuing population movement away from traditional town centers that began about 1960. Upland populations grew $1.42 \%$ annually compared to $0.77 \%$ annually for OSDA

## TCHH1 Population Density

OSDA75 and OSDA150, which are the most transmissive and contaminantvulnerable aquifer subsets, had the greatest population densities (4.8 and 5.4 times that of upland areas,), and the greatest increases in absolute population density (33.6 and $38.5 \mathrm{p} / \mathrm{mi}^{2}$ ) over 1990-2000. This is somewhat different than observed on an annual rate change basis. In this case, Upland areas had the highest value, due to having the highest percent change in absolute population over 1990-2000.

## TCHH1 Saturated Thickness Sufficiency Analysis

A 1300 verification-well study revealed that approximately half of any OSDA75, OSDA150, RSDA75, or RSDA150 area determined from the USGS stratified-drift aquifer maps using the univariate Krasny equation is likely to have insufficient saturated thickness to sustain high yield on the basis of the bivariate Mazzafero equation. Subsequent OSDA and RSDA estimates are labeled as updated to reflect when b-sufficiency factors have been applied.

## TCHH1 Remaining Potentially High-Yield Stratified-Drift Aquifer

Stratified-drift aquifers are by far more limited in New Hampshire than previously understood. After water quantity, quality considerations, and b-sufficiency analysis, only 4.4\% and 2.0\% of New Hampshire's 1245 mi ${ }^{2}$ of stratified drift remained available, with the potential to support a 75+ gpm well or a 150+ gpm well respectively, circa 2000. Since hydraulic conductivities, water budgets, aquifer boundaries and wellhead protection areas were not considered, the actual figures may be even lower.

## TCHH1 Town RSDA Endowment

A large majority of towns have relatively small amounts of remaining highyield stratified-drift aquifer. Three fourths of NH towns have less than 0.5 $\mathrm{mi}^{2}$ RSDA75. Almost 9 of 10 NH towns have less than $0.5 \mathrm{mi}^{2}$ of all RSDA150.

## TCHH1 Local Opportunities for Conservation

 Conversely, the greatest opportunities for conservation exist in the relatively few towns, which together, have the greatest quantity of the remaining potentially high-yield aquifer resources. $24.3 \%$ of all NH towns encompass three-fourths of RSDA75. 10.8\% of all NH towns encompass two thirds of all RSDA150. (See Figure 11 and Figure 12 of Chapter I).
## TCHH1 Regional Opportunities for Conservation

Regionally, the smaller extent, rural North has somewhat greater opportunities for aquifer conservation than the larger, more-urban South. The highly populated Coast has almost no potentially high-yield stratifieddrift aquifer remaining available, a resource issue that the public is already aware of. The more urban South ( $20 \%$ larger and with twice as much OSDA as the North) has slightly less (b-sufficiency updated) RSDA75 and RSDA150 (25.8 $\mathrm{mi}^{2}$ and $10.4 \mathrm{mi}^{2}$ ) respectively than the rural North ( $28.7 \mathrm{mi}^{2}$ and $14.3 \mathrm{mi}^{2}$ ). Consequently, while opportunities for conservation exist in both the North and South, the opportunities are somewhat greater in the rural North. (See Figure 11 and Figure 12 of Chapter I.)

## TCHH1 Projected Stratified-Drift Aquifer Losses in 2025

 Regulatory-related losses of areas of potentially high-yield stratified-drift aquifer are projected to be only marginally higher in 2025 than in 2000, primarily due to:A) Greater population growth projected by NHOEP for towns with large aquifers, and
B) The fact that larger, more populated aquifers have greater ability to accommodate further population increases with a lower per capita loss.

CAVEAT: This conclusion should not be interpreted as NH towns need be unconcerned about protecting their future water resources. The conclusion only indicates that the loss of Favorable Gravel Well Analysis areas (i.e. where large public water wells can located according to MINIMUM state regulatory setbacks, and without consideration of physical water budgets, or of aquifer boundary conditions), occurs at a slower rate on larger, more populated high-yield aquifers. The regulatory setbacks used are by far, much smaller than true wellhead protection areas for any large public water supply. Furthermore, since the Favorable Gravel Well Analysis is a preliminary GIS-based analysis, the existence of any available FGW area does not guarantee that it is free of contamination, or exists in sufficient quantity.

Despite the facts that:
A) OSDA75 and OSDA150 losses were $63.4 \%$ and $71.8 \%$ as of 2000,
a B) Both aquifer subsets had the highest historical population densities and historical density increases, and
C) The state population is projected to grow $28 \%$ over 2000-2025, the modeled OSDA75 losses of the most probable scenario were projected to grow only 2.2 percentage points to a $65.6 \%$, while OSDA150 aquifer losses were projected to grow only 2.4 percentage points to 74.2 \% by 2025. These surprising figures resulted from the coincidence of several factors. First, onaquifer population growth has historically been $1 / 2$ that of upland growth, so onaquifer population growth will be less than the state average. More importantly, aquifer loss is a highly non-linear function of aquifer size and population. This nonlinearity stems from:

- High early aquifer losses that occur as the result of pre-existing hydrography and initial road construction.
- Subsequent development that results in significant setback overlap, reducing further per capita aquifer losses.
- Larger high-yield aquifers that accommodate greater population densities with lower aquifer loss.

Finally the greatest population increases are projected to occur on the largest aquifers. Since larger aquifers have historically accommodated higher population densities with lower per capita aquifer loss (due to the nonlinear
model), the projected population increases are absorbed with lower aquifer losses.

This work was performed without the benefit the b-sufficiency study of Chapter III. $65.6 \%$ OSDA75L and 74.2 \% OSDA150L corresponds to $111.3 \mathrm{mi}^{2}$ RSDA75 and $43.5 \mathrm{mi}^{2}$ RSDA150 in 2025. Applying the b-sufficiency factors of Chapter III drops these values by about one half to $51.5 \mathrm{mi}^{2} \mathrm{RSDA} 75$ and $22.6 \mathrm{mi}^{2}$ RSDA150 in 2025, further emphasizing the scarcity of these valuable resources.

## TCHH1 Aquifers Most Vulnerable to Development

 Smaller OSDA75 or OSDA150 aquifers are particularly vulnerable to losses from road construction for either on-aquifer or off-aquifer populations. The same is true for towns which have moderately-sized aquifers with little RSDA. Larger aquifers will tend to have greater fragmentation which will attenuate such an impact.
## TCHH1 The Impact of Aquifer Protection Ordinances

Aquifers having protection ordinances might be expected to experience fewer aquifer losses due to restrictions on the amount of impermeable surface allowed. However, the seventy-five OSDA75 aquifers identified as having aquifer protection in place as of 2006, tended to be denselypopulated and have above-average aquifer area. Consequently, as determined in Chapter II, these aquifers are more likely to absorb greater numbers of people with lower per capita aquifer-losses than smaller, lessdensely populated aquifers. As a result, it cannot be stated conclusively from this study that aquifer protection has reduced the amount of high
yield aquifer losses occurring with population growth. This was verified by a Student's T-Test of log-normalized per capita OSDA75-losses for protected and unprotected aquifer subsets. A more detailed analysis may be possible after 2010, when new census data will become available, provided that far more detailed data can be collected and verified regarding types of aquifer protection, dates of implementation and spatial areas involved.

## TCHH1 Classification Error in Saturated-Thickness Maps

The USGS contoured saturated-thickness data can be described in scientific terms as accurate, but imprecise, based on the following factors:

- Overall accuracy for the 674 verification wells in the 7 USGS aquifer study-areas that utilized a 20 ft saturated-thickness contour-interval was determined to be 33.7\%.
- Overall accuracy for the 626 verification wells in the 6 USGS aquifer study-areas that utilized a 40 ft saturated-thickness contour-interval was determined to be 42.5\%.
- Class-offset analyses revealed that both the 20 ft and 40 ft saturated-thickness-interval groups had approximately normal distributions around the correctly classed category.
- Classification errors extended to $\pm 5$ class-offsets for both 20 ft and 40 ft saturated-thickness-interval groups.


## TCHH1 Trend of Classification Accuracy with Depth

 Accuracy of the USGS saturated-thickness classes decreases significantly with depth. In both 20 ft and 40 ft saturated-thickness-interval matrices, map-user accuracies declined from highs of $48 \%$ in the combined lower classes, to $0 \%$ in classes for depths greater than 100 ft and 160 ft for the 20 ft and $40 \mathrm{ft} \mathrm{b-}$ interval groups, respectively. This decline in map-user accuracy with increased depth appears to be a bias in contouring of saturated-thickness towards more frequently represented wells in shallower-bedrock depths.

## TCHH1 Transmissivity and Saturated-Thickness Classification Accuracy

High-T wells ( $T \geq 2000 \mathrm{ft}^{2} / d$, or OSDA150), were generally less accurate in saturated-thickness classification accuracy, and more prone to overclassification (an undesirable error) then low-T wells ( $T<2000 \mathrm{ft}^{2} / \mathrm{d}$ ).

Low-T wells were generally more accurate classed, but more prone to under-classification (a desirable error).

## REFERENCES

American Association for the Advancement of Science (1996). Environmental Refugees: Anticipation, Intervention, Restoration, Proceedings of the 1996 Annual Meeting of the American Association for the Advancement of Science, Baltimore, MD, pp. 8.

Ayotte, J.D. and Toppin, K.W., (1995), Geohydrology and Water Quality of Stratified-Drift Aquifers in the Middle Merrimack River Basin, South-Central, New Hampshire: US Geological Survey Water-Resources Investigations Report 924192, pp. 52, 8 pls.

Ayotte, J.D., (1997), Geohydrology and Water Quality of Stratified-Drift Aquifers in the Winnipesaukee River Basin, Central New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 94-4150, pp. 193, 8 pls.

Bates J.K. and J.E. Evans, (1996). Evaluation of Wellhead Protection Area Delineation Methods, Applied to the Municipal Well Field Elmore, Ottawa County, Ohio. Ohio Journal of Science, Vol. 1, pp. 13-22.

Brown, C. (1996). New Hampshire Department of Transportation, personal communication.

CAMO, (2005). The Unscrambler Appendices: Method References, www.camo.com/The Unscrambler/Appendices.

Clean Air-Cool Planet and C. Wake, (2005). Indicators of Climate Change in the Northeast 2005, The Climate Change Research Center, University of New Hampshire, pp. 40.

Congalton, R., and K. Green (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, New York, pp. 137.

Copty, N. and A. Findikakis (2000). Quantitative Estimates of Uncertainty in the Evaluation of Groundwater Remediation Schemes, Groundwater, Vol. 38, No.1, p. 29-37.

Cotton, J.E., and Olimpio, J.R., (1996). Geohydrology, Yield, and Water Quality of Stratified-Drift Aquifers in the Pemigewasset River Basin, Central New Hampshire: U.S. Geological Survey, Water-Resources Investigations Report 944083, 258 pp., 10 pls.

Dugan, J.T. and Dale Cox, (1994), Water-Level Changes in the High Plains Aquifer: U.S. Geological Survey Water-Resources Investigations Report 944157, pp. 5.

Dutton, A, R. Reedy, and R. Mace, (2000). Final Topical Report - Saturated Thickness in the Ogallala Aquifer in the Panhandle Water Planning AreaSimulation of 2000 through 2050 Withdrawal Projections, Panhandle Water Planning Group, Bureau of Economic Geology, Austin, TX, pp. 43. http://www.twdb.state.tx.us/assistance/rwpg/reg-plans/rwp/a/submitted files/ appendix k/text begfinal1220.doc

ESRI, (2004). arcGIS Version 9.0, Geographic Information System software, Environmental Systems Research Institute, Redlands, CA.

Faga, M. and N.Misiti (2001). Protecting Your Community's Water Supply Using GIS, National Rural Water Association, Duncan, OK, pp.2. http://www.nrwa.org/2001/publications/articles/UsingGIS.htm

Fisher, R. and W. Ury (1991). Getting to Yes - Negotiating Agreement Without Giving In, Penguin Books, N.Y., pp. 200.

Fischl, P. (1996). Predicting Areas of Future Public Water-Supply Problems -- -Floridan Aquifer, NE Florida, AWRA Symposium on GIS and Water Resources, Ft. Lauderdale, pp. 23. http://www.awra.org/proceedings/gis32/fischl/index.html

Flanagan, S.M., (1996). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Middle Connecticut River Basin, West-Central New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 94-4181, pp. 224, 8 pls.

Goodchild, M. (2000). Communicating the Results of Accuracy Assessment: Metadata, Digital Libraries, and Assessing Fitness for Use; Chapter I of Quantifying Spatial Uncertainty in Natural Resources, H.T. Mowrer and R.G. Congalton, editors; Ann Arbor Press, p. 3-15.

Haining, R. and G. Arbia (1993). Error Propagation thorough Map Operations, Technometrics, Vol. 35, No. 3, p. 293-306.

Harris, S.L., and Steeves, P.A., (1994). Identification of Potential Public Water-Supply Areas of the Cape Cod Aquifer, Massachusetts, Using a Geographic Information System, U.S. Geological Survey, Water-Resources Investigations Report 94-4156, pp.1-19.

Harte, P.T. and Johnson, William, (1995). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Contoocook River Basin, South-Central New Hampshire, with a section on Geohydrologic Setting, by Richard Bridge Moore: U.S. Geological Survey Water Resources Investigations Report 92-4154, 72 pp., 4 pls.

International Association of Hydrological Sciences (IAHS) (1993); Consequences of Spatial Variability in Aquifer properties and Data limitations for Groundwater Modeling Practice, Publication No. 175; Institute of Hydrology, Wallingford, Oxfordshire, UK, pp. 272.

Kansas Department of Agriculture (2001). Groundwater Declines and StreamAquifer Interactions. Topeka, KS, pp. 2. ttp://www.accesskansas.org/kda/dwr/ basinteam/UpperArk/UAGroundStreamInteractionsPage.htm

Krasny, J., (1993). Transmissivity and Pumping Yield, Groundwater, Vol. 31. No. 2, p 230.

Kupfersberger, H. and G. Bloschl (1995). Estimating Aquifer Transmissivities on the Value of Auxiliary Data, Journal of Hydrology, Vol. 165, pp. 85-99.

Lough, J., (1992). Evaluation of a Spatially Distributed Thornthwaite WaterBalance Model, Master's Thesis, University of New Hampshire, Durham, NH, pp. 176.

Lough, J. and R. Congalton, (2005). Evaluation of Stratified-drift Aquifer in New Hampshire for Potential to Serve as Large Municipal Water-Supply (Abstract), Proceedings of the 2005 NGWA Focus Conference On Eastern Regional Ground Water Issues, Portland, Maine, September 26-27, 2005. Available through the National Groundwater Association, at http://www.ngwa.org/GWOL

Lough, J., (unpublished research, 2006). Evaluation of Stratified-Drift Aquifer in New Hampshire for Potential to Serve as Large Municipal Water-Supply, pp. 52.

Mack, T.J., and Lawlor, Sean, (1992). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Bellamy, Cocheco, and Salmon Falls River Basins, Southeastern New Hampshire: U.S. Geological Survey Water Resources Investigations Report 90-4161, 65 pp., 6 pls.

McGuire, V.L., (2001). Water Level Changes in the High Plains Aquifer, 1980 to 1999: U.S. Geological Survey Fact Sheet FS-029-01, pp. 2.

Medalie, L. and R.B. Moore, (1995). Ground-Water Resources in NH: StratifiedDrift Aquifers; U.S. Geological Survey Water Resources Investigations Report 95-4100, Bow, NH, pp. 31.

Montgomery, C.W., (1992). Environmental Geology, W.C. Brown Publishers Dubuque, lowa, pp. 229.

Moore, R.B., (1990). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Exeter, Lamprey, and Oyster River Basins, Southeastern New Hampshire: US Geological Survey Water-Resources Investigations Report 88-4128, 61 p, 8 pls.

Moore, R.B., Johnson, C.D., and Douglas, E.M., (1994). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Lower Connecticut River Basin, Southwestern New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 92-4013, 187 pp., 4 pls.

Moore, R.D. and Laura Medalie, (1995). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Saco and Ossipee River Basins, East-Central New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 944182, pp. 234, 4 pls.

National Drought Mitigation Center, (August 27, 2002). The Drought Monitor, National Drought Mitigation Center, Lincoln, NE, pp. 1. http://drought.unl.edu/dm

Natural Resources Conservation Service (1997). Freshwater Consumption as a Percentage of Local Average Annual Precipitation, Washington D.C., pp. 1. http://www.nhq. hrcs.usda.gov/land/meta/m2137.htm http://www.nrcs.usda.gov/technical/land/meta/m2137.htm (postscript file)

New Hampshire Department of Environmental Services (1995). A Guide to the New Hampshire Rules for Siting Large Overburden Community Wells, Concord, NH, pp. 21.

New Hampshire Department of Environmental Services, (1999a). A Guide to Identifying Potentially Favorable Areas to Protect Future Municipal Wells in Stratified-Drift Aquifers, Vol. 1, Concord, NH, pp. 35.

New Hampshire Department of Environmental Services, (1999b). A Guide to Identifying Potentially Favorable Areas to Protect Future Municipal Wells in Stratified-Drift Aquifers, Vol. 2, Concord, NH, pp. 55.

New Hampshire Department of Environmental Services, (1999). NH Drinking Water Source Assessment Program Plan May 1999, Concord, NH, pp. 45.

New Hampshire Department of Environmental Services (2000). Water-Supply Land Conservation Grant Program, Concord, NH, pp. 4. http://www.des.state.nh.us/dwspp/ ws landgrant.htm

New Hampshire Department of Environmental Services (2002). Public WaterSupply GIS Coverage, Concord, NH.

New Hampshire Department of Environmental Services, (2007). Env-Ws 379, Site Selection of Large Production Wells for Community Water System, Concord, NH, pp. 55.

New Hampshire Office of Energy and Planning (2004). New Hampshire Population Projections for State and Counties Update: September 2004, Concord, NH. pp. 20.

New Hampshire Office of Energy and Planning (2005). Municipal Population Projections 2005 to 2025, Concord, NH. pp. 9.

Olimpio, J.R. and J.R. Mullaney, (1997). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Upper Connecticut and Androscoggin River Basins, Northern New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 96-4318, pp.161, 8 pls.

Regan et al. (1997). Personal interviews with 5 contamination project managers to identify common characteristics, including typical length, of contaminant plumes in NH; J. Regan, R. Wickson, S. Hilton, T. Andrews, P. Currier, and P. Rydell, New Hampshire Department of Environmental Services, 1997.

Scientific Committee on Water Research (1997). Water Resources Research: Trends and Needs 1997, Journal of Hydrological Sciences, Vol. 43(1), pp. 19-46.

Society for the Protection of New Hampshire Forests, (1998a). Recommended Water-supply Land Conservation Program for New Hampshire, Submitted to the New Hampshire Department of Environmental Services, Concord, NH, pp. 64.

Society for the Protection of New Hampshire Forests (1998b). Our Drinking Water-Supply Lands in New Hampshire - How Secure Are They?, Concord, NH, pp. 12. http://www.spnhf.org/explor/library/Research/drinkingwater.pdf

Society for the Protection of New Hampshire Forests, (2005). New Hampshire's Changing Landscape 2005 (Executive Summary), Concord, NH, pp. 14

Stekl, P. J., and Flanagan, S. M., (1992). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Lower Merrimack and Coastal River Basins, Southeastern New Hampshire: U.S. Geological Survey Water Resources Investigations Report 91-4025, 93 pp., 6 pls.

Stekl, P. J. and Sarah M. Flanagan, (1997). Geohydrology and Water Quality of Stratified-Drift Aquifers in the Upper Merrimack River Basin, South-Central New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 954123, 137 pp., 8 pls.

Solley, W.B., R.R. Pierce, and H.A. Pearlman, (1998): Estimated Use of Water in the United States in 1995: U.S. Geological Survey Circular 1200, pp. 23.

Toppin, K.W., (1987). Hydrogeology of Stratified-Drift Aquifers and Water Quality in the Nashua Regional Planning Commission Area South-Central New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 864358, 101 pp., 6 pls.

Ury, W. (1991). Getting Past No - Negotiating Your Way from Confrontation to Cooperation, Bantam Books, N.Y., pp. 189.
U.S. Census Bureau, (2006). American Factfinder, glossary. http://www.census.gov/geo/www/tiger/overview.html
U.S. Environmental Protection Agency (August, 1997), State Source Water Assessment and Protection Programs Guidance Final Guidance, USEPA 816-R-97-009, Office of Water, Washington, D.C., pp. 76.
U.S. Environmental Protection Agency, (1998). Proceedings, Source-Water Assessment and Protection 98, Conference, April 1998, Dallas, Texas, pp. 348.
U.S. Geological Survey, (1987). New Hampshire Water Supply and Use, National Water Summary 1987 -- Hydrologic Events and Water Supply and Use, WaterSupply Paper 2350, pp. 361-366.
U.S. Geological Survey, (1996). New Hampshire State Fact Sheet, USGS Fact Sheet FS-029-96, http://water.usgs.gov/pubs/FS/FS-029-96, pp. 8.
U.S. Geological Survey (2002), High Plains Regional Ground-Water Study Fact Sheet. http://co.water.usgs.gov/nawga/hpgw/factsheets/DENNEHYFS1.html
U.S. Global Change Research Program (2000). Overview: Summary. Climate Change and Our Nation, U.S. Global Change Research Program, Washington, DC, pp. 5.
U.S. Global Change Research Program, New England Regional Assessment Group, (2001). Preparing for a Changing Climate: The Potential Consequences of Climate Variability in Change. New England Regional Overview, U.S. Global Change Research Program, UNH, Durham, NH. pp. 96
U.S. Government, (2002). Code of Federal Regulations, 40, Ch. I (7-1-02 Edition). Section 141.2.
U.S. Water News Online (July, 2000). Arizona Facing Water Crisis with Growth. Halstead, Kansas. http://www.uswaternews.com/archives/arcsupply/tarifac7.html

Vassolo, S., W. Kinzelbach, and W. Schafer (1998). Determination of a Wellhead Protection Zone by Stochastic Inverse Modeling, Journal of Hydrology, Vol. 206, pp. 268-280.

Wondolleck, J.M. and S.L. Yaffee (2000). Making Collaboration Work, Island Press, Washington, D.C., pp. 277.

## APPENDICES

## APPENDIXA

## EXPLANATION OF WELL TYPES

## Well Type

## Description

Artesian: $\qquad$ Hydrologically, "artesian" refers to a well with a water level rising above ground. New Hampshire drillers often use it to refer to bedrock wells.

Bedrock:
Wells located in structural bedrock instead of overburden sands and gravels.

Dug Well:
A shallow well, typically less than 25 feet, dug manually or by excavator in sand and gravel materials.

Gravel Packed Well: ....A well drilled into sand and gravel materials, which is lined with a pipe that is screened on its lower end. The screen is packed externally with a highly conductive uniform sand.

Gravel well:
A well drilled into sand and gravel materials, which is lined with a pipe that is screened at its lower end. The screen is not necessarily packed externally with a conductive uniform sand.

Driven Point Wells: ...... Wells are constructed by driving pipe into sand and gravel materials without drilling. The bottom end of the pipe is pointed and has screened for subsections for water entry.

Infiltration Wells: $\qquad$ A well in stratified drift that is located close enough to surface water to induce infiltration from it.

Spring: $\qquad$ A naturally existing depression in overburden materials, accompanied by a relatively active influx of water. Springs are typically small, and are often located on toe-slopes of hills.

## APPENDIX B

## STRATIFIED-DRIFT AQUIFERS

The following material on stratified-drift aquifers has been excerpted from $A$ Guide to Identifying Potentially Favorable Areas to Protect Future Municipal Wells in Stratified-Drift Aquifers, Volume I, NH Department of Environmental Services (1999).

## Stratified-Drift Aquifers

Stratified-drift aquifers are commonly referred to as sand-and-gravel aquifers because they often are predominantly composed of sand and gravel deposits. Although "stratified drift" is the geologically more precise term, both descriptions may generally be used interchangeably without creating confusion. An understanding of these aquifers is critical to the protection of groundwater resources and development of public and private water systems.

In order to understand the stratified-drift map, which is the base map used for the favorable gravel-well analysis, it is helpful to understand some of the terminology used to describe groundwater. This section of the guide describes some general concepts about stratified-drift aquifers and groundwater. Key words are given in bold text where they are first mentioned and/or defined.

Aquifer: An aquifer is any geologic formation which can transmit significant quantities of water to wells and springs. The term has been used to describe both unconsolidated sediments and the underlying bedrock. Any formation
containing a layer or zone which is relatively permeable (i.e., able to transmit water with relative ease), which is saturated (i.e., filled to capacity with water), and lies adjacent to a less permeable material can generally be considered an aquifer. Aquifers may be in till, fractured bedrock, or stratified drift.

Till: Till refers to the unsorted mixture of earth material which was carried beneath, within, or on top of a glacier and then deposited. Deposits of till, generally 10-25 feet thick, cover the majority of the hill-slopes and upland areas of New Hampshire. There are a variety of till types, but most exhibit a wide range in particle size from boulders to fine silts and clays. These materials were incorporated into the glacier as it advanced southeasterly across what is now New Hampshire. Underneath the glacier, material was smeared along the land's surface as compact deposits of lodgment till or basal till. Less dense deposits of ablation till were draped across the landscape when the glacier stagnated and melted in place. Many private water wells are dug in till. Although yields vary greatly seasonally and in different wells, well yields from till are generally less than 5 gallons per minute.

Bedrock: Bedrock is the solid material that underlies all unconsolidated material (soil, till, stratified drift) and makes up the earth's crust. In New Hampshire, where porous rock such as limestone or sandstone is rare, groundwater is available in fractures, or cracks, in bedrock. Hence, fractured bedrock formations can serve as aquifers. The vast majority of home wells constructed since 1984
have been drilled in bedrock. While almost any site in New Hampshire can support a well with sufficient yield to serve a single-family home, relatively few sites can support a municipal water supply well. Stratified-Drift Aquifers: Stratified-drift material, unlike till, is composed of glacial sediments transported and deposited by melt-water. It is stratified or sorted into discrete horizontal or dipping layers which reflect changes in depositional environments as the last continental ice sheet retreated 10,000 to 14,000 years ago. In general, the coarser sand and gravel deposits were laid down closer to the melting glacier, in swift-moving water. Among these ice-contact deposits are eskers, kames, kame terraces, and ice- contact deltas. All are characterized by sorted deposits in discrete layers.

Sand and gravel deposits are often buried or surrounded by more fine-grained outwash sediments which were "washed out" of the melting ice front as it retreated further to the north. Where melt-water streams entered standing bodies of water, glacial lake deltas were formed. The finest sediments settled to the lake bottom in quieter water while coarser material formed fan-shaped delta deposits in the lake at the mouth of the stream. Over time, deltas advanced over the fine-grained lake bottom sediments into deeper waters of the lake.

Development of groundwater supplies in New Hampshire has been most successful in thick, saturated deposits of sand and gravel. These are stratified-drift aquifers. The coarser deposits are characterized by their high
hydraulic conductivity which allows effective groundwater movement and storage. In contrast, fine-grained glacial lake sediments, in spite of their high capacity to store water, have a very low hydraulic conductivity because water is retained in the small pore spaces by the force of surface tension which inhibits free drainage.

Hydraulic conductivity: Hydraulic conductivity is an indication of the ease with which water may pass through a given porous material. In this report, it is measured in feet per day.

Saturated Thickness: Saturation is said to occur in a porous, permeable formation when all of the interconnected pores or fractures are filled with water. The saturated thickness of a stratified-drift aquifer is the difference between the elevation of the water table and the elevation of bedrock (or the bottom of the aquifer). This distance is measured in feet.

Transmissivity: Transmissivity is the product of the hydraulic conductivity of the aquifer material and the saturated thickness of the aquifer. Transmissivity measures the ability of the aquifer to produce water. Values of transmissivity are in units of feet squared per day ( $\mathrm{ft}^{2} / \mathrm{d}$ ). It is important to understand that the most productive areas are characterized by deposits having both high hydraulic conductivity and significant saturated thickness.

## APPENDIX C

NHDES SANITARY PROTECTIVE RADII FOR WATER-SUPPLY WELLS

| Permitted Daily <br> Production <br> Volume (gpd) | Permitted Daily <br> Production <br> Volume (gpm) | Sanitary <br> Protective <br> Radius (ft) | FGWA <br> Comment |
| :---: | :---: | :---: | :---: |
| $<14,401$ | $<10$ | 150 | Insufficient Quantity |
| $14,401-28,800$ | $10-20$ | 175 | Insufficient Quantity |
| $28,801-57,600$ | $20-40$ | 200 | Insufficient Quantity |
| $57,601-86,400$ | $40-60$ | 250 | Insufficient Quantity |
| $86,401-115,200$ | $60-80$ | 300 | 75 gpm radius |
| $115,201-144,000$ | $80-100$ | 350 | No Equivalent USGS <br> Transmissivity |
| $>144,000$ | $>100$ | 400 | 150 gpm radius |

Table 38. NHDES Sanitary Protective Radii for Water-Supply Wells. The sanitary protective radii required by NHDES as a function of yield. The 300 ft and 400 ft radii apply to the 75 gpm and $150+\mathrm{gpm}$ yield classes of this study.

## APPENDIX D

## BUFFERS USED IN THE FAVORABLE GRAVEL WELL ANALYSIS FOR POTENTIAL CONTAMINATION sOURCES

| DES Project <br> Type | Description | Buffer (ft) |
| :---: | :--- | :---: |
| AST | Above ground storage tank | SPR |
| GWRELDET | Sites which have groundwater release detection permits and no <br> other defined project type | 1000 |
| HOLDING TANK | Example: temporary storage of garage wastes | SPR |
| TRI | Toxic Release Inventory (air) | SPR |
| LAND/PRP | Proposed landfill | 1000 |
| LAND/LN | Lined landfills | 1000 |
| LWW/LAG | Lined wastewater lagoon | 0 |
| MINING SITES | Sand/gravel or bedrock mine | SPR |
| OLD DUMP | Old Dump Sites (non-landfill) | SPR |
| PESTICIDES | Property boundaries reported as pesticide application. | SPR |
| RCRA | Resource Conservation \& Recovery Act- registered hazardous <br> waste handlers | 0 |
| REMED/RCHG | Remediation recharge-treated or remediated groundwater <br> discharged to groundwater | 1000 |
| SALT <br> STORAGE <br> COVERED | Covered salt storage | SPR |
| STORM <br> DRAINS | Storm drains | SPR |
| TRANS.STA | Solid waste transfer stations with groundwater permits | 1000 |
| UST | Underground storage tank facilities | SPR |
| Cultural <br> Features | Other cultural features than those above | SPR |

Table 39. Buffers for Potential Contamination Sites. SPR indicates that the sanitary protective radius is the buffer used in the Favorable Gravel-Well Analysis (NHDES 1998b).

## APPENDIX E

BUFFERS USED IN THE FAVORABLE GRAVEL WELL ANALYSIS FOR KNOWN CONTAMINATION SOURCES

\begin{tabular}{|c|c|c|}
\hline NHDES Project Type \& Description \& \begin{tabular}{l}
Buffer \\
(ft)*
\end{tabular} \\
\hline CERCLA \& Superfund Site \& 1000 \\
\hline COMPLAINTS \& Complaints or referrals (town files) \& 1000 \\
\hline FUEL \& Leaking bulk storage facilities of fuel oil \& 1000 \\
\hline \(\mathrm{H}_{2} \mathrm{O}\) SAMPLE \& Isolated groundwater sample \& 1000 \\
\hline HAZWSTE \& Hazardous waste project \& 1000 \\
\hline JUNKYD \& Junkyards with more than 50 autos \& 1000 \\
\hline LAND/UNLN \& Existing unlined landfill or landfill closure \& 1000 \\
\hline LAST \& Leaking above ground bulk storage facilities containing motor fuel \& 1000 \\
\hline LUST \& Leaking underground storage tank \& 1000 \\
\hline MOST \& Leaking motor oil storage tank \& 1000 \\
\hline NPDES \& Pollution discharge to surface water \& 1000 \\
\hline OPUF \& Leaking residential or commercial heating tanks \& 1000 \\
\hline RAPIDINF \& Rapid infiltration basins \& 1000 \\
\hline SALT STORAGE UNCOVERED \& Uncovered salt storage \& 1000 \\
\hline SEPT/LAG \& Septage lagoons \& 1000 \\
\hline SEPTIC \& Subsurface wastewater disposal \(>20,000\) gpd \& 1000 \\
\hline SITEEVAL \& Unsolicited site assessment/hazwaste types \& 1000 \\
\hline SLUD/LAG \& Sludge lagoons \& 1000 \\
\hline SLUDGAP \& Sludge application sites \& SPR \\
\hline SNOW DUMPS \& Snow Dumps \& 1000 \\
\hline SPILL/RLS \& Spill or release \& 1000 \\
\hline SPRAYIRR \& Spray irrigation projects \& SPR \\
\hline STUMP/DEMO \& Municipal or commercial stump or demo
dump \& 1000 \\
\hline \begin{tabular}{l}
TRI \\
UIC UWW/LAG
\end{tabular} \& \begin{tabular}{l}
Toxic releases to air and water inventory Underground injection control-discharge of benign wastewaters not requiring a groundwater discharge permit or request to cease a discharge \\
Unlined wastewater lagoons
\end{tabular} \& SPR

SPR
1000 <br>
\hline
\end{tabular}

Table 40. Buffers for Known Contamination Sites. SPR indicates that the sanitary protective radius is the buffer used in the Favorable Gravel-Well Analysis (NHDES 1998b).

## APPENDIX F

## PROTECTED AND UNPROTECTED AQUIFER PAIRS BY TOWN, ASSEMBLED FOR STATISTICAL T-TEST

| Aquifer-Protection Town-Pairs for T-Test |  |  |  |
| :---: | :---: | :---: | :---: |
| Aquifer Protection |  | No Known Aquifer Protection |  |
| FIPS Town | 2000 OSDA75L <br> per Capita ( $\mathrm{mi}^{2} / \mathrm{p}$ ) | FIPS Town | $\begin{gathered} 2000 \text { OSDA75L } \\ \text { per Capita }\left(\mathrm{mi}^{2} / \mathrm{p}\right) \\ \hline \end{gathered}$ |
| 1005 Alton | 3.87E-03 | 9090 Haverhill | $5.91 \mathrm{E}-03$ |
| 1025 Gilford | $1.05 \mathrm{E}-02$ | 5040 Jaffrey | $1.31 \mathrm{E}-02$ |
| 1040 Meredith | $4.55 \mathrm{E}-03$ | 15155 Rye | $4.32 \mathrm{E}-03$ |
| 1050 Sanbornton | $1.36 \mathrm{E}-02$ | 9185 Wentworth | $1.15 \mathrm{E}-02$ |
| 3060 Madison | $1.43 \mathrm{E}-03$ | 3040 Freedom | $1.98 \mathrm{E}-03$ |
| 5070 Rindge | $1.94 \mathrm{E}-03$ | 9160 Plymouth | $3.22 \mathrm{E}-03$ |
| 5115 Winchester | $6.20 \mathrm{E}-03$ | 13010 Andover | $6.56 \mathrm{E}-03$ |
| 7020 Berlin | $1.03 \mathrm{E}-02$ | 9120 Lisbon | $9.91 \mathrm{E}-04$ |
| 7145 Northumberland | $3.16 \mathrm{E}-03$ | 7195 Stratford | 2.89E-03 |
| 9010 Ashland | $6.18 \mathrm{E}-03$ | 9100 Holderness | $4.08 \mathrm{E}-03$ |
| 9015 Bath | $4.03 \mathrm{E}-03$ | 3085 Tuftonboro | $7.64 \mathrm{E}-03$ |
| 9055 Easton | $4.33 \mathrm{E}-03$ | 13130 Webster | $7.68 \mathrm{E}-03$ |
| 9070 Franconia | $6.77 \mathrm{E}-03$ | 7050 Columbia | $1.35 \mathrm{E}-02$ |
| 9135 Lyme | $8.16 \mathrm{E}-03$ | 9095 Hebron | $1.64 \mathrm{E}-03$ |
| 11030 Deering | $1.15 \mathrm{E}-03$ | 13080 Hopkinton | $2.44 \mathrm{E}-03$ |
| 11055 Hancock | $2.12 \mathrm{E}-03$ | 9065 Enfield | $2.74 \mathrm{E}-03$ |
| 11115 New Boston | $4.98 \mathrm{E}-03$ | 9115 Lincoln | $6.96 \mathrm{E}-03$ |
| 11120 New Ipswich | $2.69 \mathrm{E}-03$ | 1055 Tilton | $3.20 \mathrm{E}-03$ |
| 11145 Weare | $2.81 \mathrm{E}-03$ | 17005 Barrington | $1.02 \mathrm{E}-03$ |
| 11150 Wilton | $1.68 \mathrm{E}-02$ | 7120 Lancaster | 3.06E-03 |
| 13020 Bow | $3.04 \mathrm{E}-03$ | 9190 Woodstock | $1.09 \mathrm{E}-02$ |
| 13075 Hooksett | $9.60 \mathrm{E}-04$ | 5035 Hinsdale | 2.12E-03 |
| 13090 Newbury | $1.62 \mathrm{E}-03$ | 13025 Bradford | 7.87E-03 |
| 13100 Northfield | $3.19 \mathrm{E}-03$ | 9130 Lyman | $2.09 \mathrm{E}-02$ |
| 13105 Pembroke | $1.89 \mathrm{E}-03$ | 13085 Loudon | $1.71 \mathrm{E}-03$ |
| 15010 Auburn | $5.38 \mathrm{E}-03$ | 7190 Stewartstown | $8.25 \mathrm{E}-03$ |
| 15015 Brentwood | $2.65 \mathrm{E}-03$ | 5065 Richmond | $1.41 \mathrm{E}-03$ |
| 15055 Exeter | $2.49 \mathrm{E}-03$ | 13055 Epsom | $2.42 \mathrm{E}-03$ |
| 15125 North Hampton | $1.56 \mathrm{E}-03$ | 11040 Goffstown | $9.25 \mathrm{E}-03$ |
| 15140 Plaistow | 8.15E-03 | 9085 Hanover | $1.67 \mathrm{E}-03$ |
| 17015 Durham | $6.58 \mathrm{E}-03$ | 19060 Springfield | $6.52 \mathrm{E}-03$ |
| 17020 Farmington | $2.38 \mathrm{E}-03$ | 7045 Colebrook | $3.04 \mathrm{E}-03$ |
| 17045 New Durham | 2.02E-03 | 9150 Orford | 1.12E-03 |
| 17050 Rochester | $2.96 \mathrm{E}-03$ | 5045 Keene | $3.02 \mathrm{E}-03$ |
| 17060 Somersworth | $2.18 \mathrm{E}-03$ | 17040 Milton | 3.68E-03 |
| 19010 Charlestown | $6.04 \mathrm{E}-03$ | 15095 Londonderry | $6.89 \mathrm{E}-03$ |
| 19050 Newport | $5.91 \mathrm{E}-04$ | 13060 Franklin | 7.66E-04 |

## APPENDIX G

CHARACTERISTICS OF 1300 VERIFICATION WELLS

|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=$ Overclassed C=Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Date | USGS | (ft) |  | Depth (ft bgs) |  | Interp (ft m Land | polated <br> $\mathrm{msl})$ <br> Water | Satu <br> Calc | Ac <br> Cl | Thic ual ass | kness <br> Map Cla | $\begin{aligned} & \text { s (ft) } \\ & \text { ped } \\ & \text { ass } \end{aligned}$ |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 1 | 002.0092 | 07-AUG-1998 | saco | 40 | 1 | 260 | 0 | 520.0 | 513.7 | na | na | na | 0 | 40 | O |
| 2 | 007.0267 | 20-OCT-1989 | nrpc | 20 | 1 | 99 | 0 | 250.0 | 216.0 | na | na | na | 60 | 80 | 0 |
| 3 | 007.0269 | 10-NOV-1989 | nrpc | 20 | 1 | 15 | 0 | 271.0 | 268.7 | na | na | na | 0 | 10 | O |
| 4 | 015.0658 | 08-APR-1998 | coch | 20 | 1 | 28 | 0 | 0.0 | 0.0 | na | na | na | 20 | 40 | 0 |
| 5 | 015.0705 | 31-DEC-1998 | coch | 20 | 1 | 15 | 0 | 0.0 | 0.0 | na | na | na | 10 | 20 | 0 |
| 6 | 020.1775 | 11-JUL-1997 | mdmk | 20 | 1 | 26 | 0 | 240.0 | 237.0 | na | na | na | 0 | 20 | 0 |
| 7 | 033.0162 | 29-MAR-1988 | nrpc | 20 | 1 | 35 | 0 | 342.8 | 324.8 | na | na | na | 0 | 10 | 0 |
| 8 | 033.0181 | 07-OCT-1988 | nrpc | 20 | 1 | 74 | 0 | 260.5 | 244.0 | na | na | na | 20 | 40 | 0 |
| 9 | 033.0799 | 24-OCT-1997 | nrpc | 20 | 1 | 10 | 0 | 421.0 | 414.0 | na | na | na | 0 | 10 | O |
| 10 | 043.0039 | 22-JUN-1998 | saco | 40 | 1 | 20 | 0 | 517.3 | 512.2 | na | na | na | 0 | 40 | 0 |
| 11 | 071.0288 | 19-MAR-1998 | lamp | 20 | 1 | 55 | 0 | 105.0 | 87.9 | na | na | na | 0 | 20 | 0 |
| 12 | 074.0050 | 09-DEC-1998 | saco | 40 | 1 | 60 | 0 | 0.0 | 0.0 | na | na | na | 0 | 40 | 0 |
| 13 | 078.0356 | 12-JUN-1997 | lamp | 20 | 1 | 25 | 0 | 152.0 | 134.5 | na | na | na | 0 | 20 | O |
| 14 | 089.0517 | 11-NOV-1997 | lamp | 20 | 1 | 15 | 0 | 165.0 | 153.8 | na | na | na | 0 | 20 | 0 |
| 15 | 089.0577 | 13-MAY-1998 | lamp | 20 | 1 | 11 | 0 | 190.0 | 158.0 | na | na | na | 0 | 20 | 0 |
| 16 | 098.0007 | 17-DEC-1985 | cont | 40 | 1 | 100 | 0 | 699.0 | 678.0 | na | na | na | 0 | 40 | 0 |
| 17 | 118.0233 | 27-NOV-1998 | pemi | 40 | 1 | 100 | 0 | 581.0 | 556.1 | na | na | na | 0 | 40 | 0 |
| 18 | 119.0353 | 14-APR-1989 | nrpc | 20 | 1 | 20 | 0 | 206.7 | 200.0 | na | na | na | 10 | 20 | 0 |
| 19 | 119.0637 | 26-JUL-1994 | nrpc | 20 | 1 | 24 | 0 | 224.7 | 200.0 | na | na | na | 0 | 10 | 0 |
| 20 | 119.0642 | 30-SEP-1994 | nrpc | 20 | 1 | 18 | 0 | 247.1 | 234.0 | na | na | na | 0 | 10 | 0 |
| 21 | 119.0712 | 12-JAN-1995 | nrpc | 20 | 1 | 30 | 0 | 218.5 | 214.0 | na | na | na | 0 | 10 | 0 |
| 22 | 129.0564 | 22-NOV-1997 | lwmk | 20 | 1 | 12 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | O |
| 23 | 135.0424 | 29-MAY-1997 | lamp | 20 | 1 | 12 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | 0 |
| 24 | 159.0313 | 18-OCT-1995 | nrpc | 20 | 1 | 40 | 0 | 294.5 | 281.0 | na | na | na | 0 | 10 | 0 |
| 25 | 159.0323 | 21-DEC-1993 | nrpc | 20 | 1 | 20 | 0 | 291.0 | 273.5 | na | na | na | 0 | 10 | 0 |
| 26 | 167.0693 | 13-AUG-1997 | mdmk | 20 | 1 | 15 | 0 | 500.0 | 499.1 | na | na | na | 40 | 60 | 0 |
| 27 | 171.0189 | 26-SEP-1996 | lamp | 20 | 1 | 31 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | 0 |
| 28 | 188.0411 | 29-OCT-1992 | nrpc | 20 | 1 | 12 | 0 | 0.0 | 0.0 | na | na | na | 0 | 10 | 0 |
| 29 | 200.0732 | 30-DEC-1997 | lamp | 20 | 1 | 65 | 0 | 175.0 | 160.0 | na | na | na | 20 | 40 | 0 |
| 30 | 207.0065 | 10-NOV-1997 | lwmk | 20 | 1 | 40 | 0 | 108.7 | 82.2 | na | na | na | 0 | 20 | 0 |
| 31 | 211.0042 | 06-MAY-1985 | lamp | 20 | 1 | 10 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | O |
| 32 | 212.0214 | 03-SEP-1997 | saco | 40 | 1 | 40 | 0 | 678.0 | 662.0 | na | na | na | 0 | 40 | 0 |
| 33 | 236.0227 | 26-NOV-1997 | pemi | 40 | 1 | 80 | 0 | 560.0 | 556.0 | na | na | na | 40 | 80 | O |
| 34 | 256.0789 | 29-NOV-1994 | lwmk | 20 | 1 | 30 | 0 | 0.0 | 221.0 | na | na | na | 0 | 20 | 0 |
| 35 | 239.0388 | 31-AUG-2000 | winn | 20 | 1 | 75 | 0 | 554.0 | 540.0 | na | na | na | 0 | 20 | 0 |
| 36 | 149.0387 | 11-AUG-1999 | saco | 40 | 1 | 25 | 0 | 490.0 | 478.0 | na | na | na | 0 | 40 | 0 |
| 37 | 016.0255 | 17-AUG-1999 | saco | 40 | 1 | 90 | 0 | 533.0 | 520.0 | na | na | na | 40 | 80 | 0 |
| 38 | 258.0438 | 23-SEP-1999 | winn | 20 | 1 | 12 | 0 | 721.0 | 718.0 | na | na | na | 0 | 20 | 0 |
| 39 | 016.0258 | 25-SEP-1999 | saco | 40 | 1 | 135 | 0 | 631.3 | 626.9 | na | na | na | 80 | 120 | 0 |
| 40 | 014.0343 | 30-SEP-1999 | upmk | 20 | 1 | 10 | 0 | 522.0 | 505.0 | na | na | na | 0 | 20 | 0 |
| 41 | 002.0099 | 02-JUL-1999 | saco | 40 | 1 | 70 | 0 | 478.0 | 475.0 | na | na | na | 40 | 80 | O |
| 42 | 196.0613 | 30-JUL-1999 | Iwmk | 20 | 1 | 23 | 0 | 98.4 | 98.0 | na | na | na | 0 | 20 | O |
| 43 | 088.0284 | 27-JAN-2000 | saco | 40 | 1 | 65 | 0 | 389.0 | 386.4 | na | na | na | 40 | 80 | 0 |
| 44 | 079.0397 | 14-JUN-2000 | upmk | 20 | 1 | 15 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | 0 |
| 45 | 187.0464 | 26-JUL-2000 | saco | 40 | 1 | 40 | 0 | 0.0 | 0.0 | na | na | na | 0 | 40 | 0 |
| 46 | 135.0528 | 04-OCT-2000 | lamp | 20 | 1 | 30 | 0 | 159.0 | 133.5 | na | na | na | 20 | 40 | 0 |
| 47 | 015.0832 | 23-OCT-2000 | lamp | 20 | 1 | 45 | 0 | 170.0 | 160.0 | na | na | na | 0 | 20 | 0 |
| 48 | 039.0068 | 23-OCT-2000 | mdct | 40 | 1 | 155 | 0 | 1567.7 | 1564.0 | na | na | na | 40 | 80 | 0 |
| 49 | 088.0287 | 09-NOV-2000 | saco | 40 | 1 | 165 | 0 | 465.0 | 415.0 | na | na | na | 40 | 80 | 0 |
| 50 | 088.0288 | 15-DEC-2000 | saco | 40 | 1 | 12 | 0 | 413.5 | 408.4 | na | na | na | 0 | 40 | 0 |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| W | WRB | Date Completed | USGS | $\begin{gathered} 5 \\ \hline y y \\ \hline \end{gathered}$ | AGeo | $\begin{array}{r} \text { Depth } \\ \text { (ft bgs) } \mathrm{t} \end{array}$ |  | $\begin{array}{r} \begin{array}{c} \text { Inter } \\ \text { (ft } \\ \text { Land } \\ \text { Elev } \end{array} \end{array}$ | $\begin{aligned} & \text { polated } \\ & \text { mst) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{array}{\|c} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \end{array}$ |  |  | $\begin{aligned} & \text { ckness } \\ & \begin{array}{c} \text { Mapp } \\ \text { Clas } \\ \text { Min } \end{array} \end{aligned}$ |  | OCU |
| 51 | 016.0273 | 21-DEC-2000 | saco | 40 |  | 130 | 0 | 736.2 | 730.4 | na | na | na | 0 | 40 | O |
| 52 | 079.0465 | 16-JAN-2001 | upmk | 20 | 1 | 10 | 0 | 370.0 | 366.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 53 | 138.0129 | 15-AUG-2001 | mdct | 40 | 1 | 20 | 0 | 696.6 | 642.7 | na | na | na | 0 | 20 | $\bigcirc$ |
| 54 | 075.0189 | 31-MAY-2001 | saco | 40 | 1 | 40 | 0 | 438.0 | 417.5 | na | na | na | 0 | 40 | $\bigcirc$ |
| 55 | 241.0617 | 18-MAY-2001 | coch | 20 | 1 | 40 | 0 | 610.0 | 600.0 | na | na | na | 20 | 40 | - |
| 56 | 061.0595 | 24-MAY-2000 | lamp | 20 | 1 | 55 | 0 | 290.0 | 248.6 | na | na | na | 0 | 20 | $\bigcirc$ |
| 57 | 015.0947 | 04-APR-2001 | coch | 20 | 1 | 50 | 0 | 168.4 | 156.9 | na | na | na | 40 | 60 | $\bigcirc$ |
| 58 | 258.0513 | 05-JUN-2001 | winn | 20 | 1 | 35 | 0 | 614.1 | 601.9 | na | na | na | 0 | 20 | $\bigcirc$ |
| 59 | 239.0462 | 20-JUL-2001 | winn | 20 | 1 | 90 | 0 | 762.0 | 710.5 | na | na | na | 0 | 20 | $\bigcirc$ |
| 60 | 187.0527 | 08-AUG-2001 | saco | 40 | 1 | 180 | 0 | 409.0 | 407.0 | na | na | na | 120 | 160 | $\bigcirc$ |
| 61 | 032.0080 | 06-JUN-2002 | coch | 20 | 1 | 21 | 0 | 685.2 | 664.5 | na | na | na | 0 | 20 | $\bigcirc$ |
| 62 | 033.0459 | 12-FEB-1992 | nrpc | 20 | 1 | 10 | 0 | 257.5 | 231.0 | na | na | na | 0 | 10 | $\bigcirc$ |
| 63 | 075.0140 | 25-AUG-1998 | saco | 40 | 1 | 70 | 0 | 464.5 | 440.0 | na | na | na | 40 | 80 | $\bigcirc$ |
| 64 | 093.0709 | 05-AUG-1997 | mdmk | 20 | 1 | 20 | 0 | 176.0 | 168.8 | na | na | na | 0 | 20 | $\bigcirc$ |
| 65 | 165.0035 | 30-AUG-1989 | nrpc | 20 | 1 | 100 | 0 | 190.6 | 173.2 | na | na | na | 10 | 20 | $\bigcirc$ |
| 66 | 167.0682 | 16-SEP-1997 | mdmk | 20 | 1 | 70 | 0 | 429.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 67 | 178.0320 | 07-OCT-1997 | Immk | 20 | 1 | 55 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 68 | 188.0304 | 01-JUL-1989 | nrpc | 20 | 1 | 26 | 0 | 152.6 | 148.8 | na | na | na | 0 | 10 | $\bigcirc$ |
| 69 | 200.0721 | 05-SEP-1997 | lamp | 20 | 1 | 12 | 0 | 207.0 | 205.4 | na | na | na | 0 | 20 | $\bigcirc$ |
| 70 | 164.1264 | 03-JAN-2003 | winn | 20 | 1 | 10 | 0 | 521.0 | 504.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 71 | 247.1426 | 30-JUL-2001 | mdmk | 20 | 1 | 48 | 0 | 394.3 | 380.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 72 | 249.0103 | 30-MAY-2002 | pemi | 40 | 1 | 22 | 0 | 623.9 | 592.6 | na | na | na | 0 | 40 | $\bigcirc$ |
| 73 | 243.0346 | 04-OCT-2002 | cont | 40 | 1 | 56 | 0 | 426.2 | 409.8 | na | na | na | 0 | 40 | $\bigcirc$ |
| 74 | 247.1446 | 20-JUL-2000 | cont | 40 | 1 | 62 | 0 | 488.0 | 470.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 75 | 233.0418 | 19-AUG-2002 | saco | 40 | 1 | 60 | 0 | 443.6 | 423.0 | na | na | na | 80 | 120 | $\bigcirc$ |
| 76 | 239.0500 | 25-APR-2002 | winn | 20 | 1 | 25 | 0 | 610.6 | 608.6 | na | na | na | 0 | 20 | $\bigcirc$ |
| 77 | 010.0115 | 04-SEP-2002 | pemi | 40 | 1 | 18 | 0 | 0.0 | 0.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 78 | 148.0196 | 09-SEP-2002 | coch | 20 | 1 | 20 | 0 | 0.0 | 0.0 | na | na | na | 0 | 10 | $\bigcirc$ |
| 79 | 239.0502 | 24-SEP-2002 | winn | 20 | 1 | 30 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 80 | 075.0192 | 31-OCT-2002 | saco | 40 | 1 | 235 | 0 | 452.5 | 426.7 | na | na | na | 40 | 80 | $\bigcirc$ |
| 81 | 014.0424 | 16-NOV-2002 | upmk | 20 | 1 | 60 | 0 | 515.0 | 500.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 82 | 029.0628 | 23-NOV-2002 | lamp | 20 | 1 | 25 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 83 | 207.0090 | 05-DEC-2002 | Iwmk | 20 | 1 | 12 | 0 | 69.2 | 58.0 | na | na | na | 20 | 40 | $\bigcirc$ |
| 84 | 016.0296 | 10-DEC-2002 | saco | 40 | 1 | 35 | 0 | 593.5 | 589.3 | na | na | na | 40 | 80 | $\bigcirc$ |
| 85 | 052.0575 | 11-DEC-2002 | saco | 40 | 1 | 80 | 0 | 481.5 | 476.4 | na | na | na | 0 | 40 | $\bigcirc$ |
| 86 | 088.0339 | 12-FEB-2003 | saco | 40 | 1 | 115 | 0 | 460.0 | 436.4 | na | na | na | 0 | 40 | $\bigcirc$ |
| 87 | 170.0418 | 17-FEB-2003 | coch | 20 | 1 | 60 | 0 | 535.0 | 0.0 | na | na | na | 80 | 100 | $\bigcirc$ |
| 88 | 046.0357 | 19-FEB-2003 | upmk | 20 | 1 | 60 | 0 | 355.0 | 338.7 | na | na | na | 0 | 20 | $\bigcirc$ |
| 89 | 231.0265 | 15-NOV-2001 | cont | 40 | 1 | 12 | 0 | 838.0 | 827.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 90 | 212.0278 | 06-FEB-2002 | saco | 40 | 1 | 220 | 0 | 721.7 | 673.7 | na | na | na | 0 | 40 | $\bigcirc$ |
| 91 | 112.0277 | 28-AUG-2002 | mdct | 40 | 1 | 99 | 0 | 776.7 | 772.2 | na | na | na | 0 | 20 | $\bigcirc$ |
| 92 | 187.0541 | 07-DEC-2001 | saco | 40 | 1 | 165 | 0 | 409.0 | 407.0 | na | na | na | 160 | 200 | $\bigcirc$ |
| 93 | 182.0682 | 29-OCT-2001 | upmk | 20 | 1 | 12 | 0 | 587.0 | 578.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 94 | 183.0776 | 28-FEB-2002 | lamp | 20 | 1 | 25 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 95 | 149.0454 | 03-JAN-2002 | saco | 40 | 1 | 45 | 0 | 523.7 | 506.8 | na | na | na | 0 | 40 | $\bigcirc$ |
| 96 | 149.0455 | 18-JUN-2002 | saco | 40 | 1 | 185 | 0 | 476.0 | 464.9 | na | na | na | 120 | 160 | - |
| 97 | 149.0459 | 05-APR-2002 | saco | 40 | 1 | 115 | 0 | 478.0 | 446.0 | na | na | na | 80 | 120 | $\bigcirc$ |
| 98 | 131.0155 | 24-OCT-2001 | upct | 40 | 1 | 46 | 0 | 878.0 | 862.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 99 | 116.0433 | 11-APR-2002 | cont | 40 | 1 | 375 | 0 | 774.1 | 764.0 | na | na | na | 0 | 40 | - |
| 100 | 098.0174 | 15-NOV-2002 | cont | 40 | 1 | 246 | 0 | 882.8 | 840.0 | na | na | na | 0 | 40 | 0 |


|  | Characteristics for 1300 Verification Wells |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology $1=100 \%$ Till $2=$ Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O v e r c l a s s e d} \mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | $\begin{gathered} \text { Date } \\ \text { Completed } \end{gathered}$ | USGS Study | $\left\|\begin{array}{l} \text { (ft) } \\ \text { STI } \end{array}\right\|$ | AGeo | $\begin{array}{\|c} \begin{array}{c} \text { Depth } \\ (\mathrm{ft} \mathrm{bgs}) \mathrm{t} \end{array} \\ \hline \text { Bedrock } \\ \hline \end{array}$ | $\frac{\text { to }}{1 \text { Till }}$ | $\begin{aligned} & \begin{array}{l} \text { Interp } \\ \text { (ft m } \\ \text { Land } \\ \text { Elev } \end{array} \end{aligned}$ | $\begin{aligned} & \text { polated } \\ & \text { mst) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{array}{\|c} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \end{array}$ | $\begin{aligned} & \text { urated } \\ & \begin{array}{\|c\|c\|} \text { Actu } \\ \text { Clas } \\ \hline \text { Min } \mid \end{array} \end{aligned}$ |  | $\begin{gathered} \text { ckness } \\ \begin{array}{c} \text { Map } \\ \text { Cla } \\ \text { Min } \end{array} \end{gathered}$ |  | OCU |
| 01 | 088.0340 | 14-NOV-2001 | saco | 40 | 1 | 15 | 0 | 418.6 | 414.5 | na | na | na | 40 | 80 | O |
| 102 | 088.0345 | 02-MAY-2002 | co | 40 | 1 | 15 | 0 | 422.0 | 407.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 103 | 075.0193 | 23-MAY-2002 | saco | 40 | 1 | 180 | 0 | 484.0 | 480.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 104 | 052.0585 | 06-MAR-2002 | saco | 40 | 1 | 80 | 0 | 443.1 | 430.2 | na | na | na | 0 | 40 | $\bigcirc$ |
| 105 | 052.0588 | 18-JUL-2002 | co | 40 | 1 | 90 | 0 | 462.9 | 449.0 | na | na | na | 40 | 80 | $\bigcirc$ |
| 106 | 052.0589 | 10-JUL-2002 | co | 40 | 1 | 50 | 0 | 488.8 | 480.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 107 | 052.0597 | 22-APR-2002 | saco | 40 | 1 | 45 | 0 | 0.0 | 0.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 108 | 051.0589 | 19-JUL-2000 | upmk | 20 | 1 | 42 | 0 | 375.0 | 333.2 | na | na | na | 0 | 20 | $\bigcirc$ |
| 109 | 015.0973 | 29-MAY-2002 | coch | 20 | 1 | 50 | 0 | 0.0 | 0.0 | na | na | na | 0 | 10 | $\bigcirc$ |
| 110 | 061.0787 | 20-JUN-2003 | lamp | 20 | 1 | 14 | 0 | 312.0 | 295.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 111 | 143.0727 | 02-NOV-2002 | upmk | 20 | 1 | 10 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 112 | 006.1208 | 21-MAY-2003 | winn | 20 | 1 | 10 | 0 | 640.0 | 635.8 | na | na | na | 0 | 20 | $\bigcirc$ |
| 113 | 015.1084 | 19-SEP-2003 | lamp | 20 | 1 | 25 | 0 | 146.5 | 141.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 114 | 223.0614 | 01-AUG-2003 | coch | 20 | 1 | 35 | 0 | 522.0 | 517.0 | na | na | na | 10 | 20 | $\bigcirc$ |
| 115 | 241.0705 | 08-JUL-2003 | saco | 40 | 1 | 15 | 0 | 0.0 | 0.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 116 | 079.0520 | 27-AUG-2003 | upmk | 20 | 1 | 25 | 0 | 310.0 | 298.5 | na | na | na | 0 | 20 | $\bigcirc$ |
| 117 | 021.0657 | 12-SEP-2003 | winn | 20 | 1 | 80 | 0 | 503.5 | 496.5 | na | na | na | 0 | 20 | $\bigcirc$ |
| 118 | 010.0128 | 17-MAR-2003 | pemi | 40 | 1 | 10 | 0 | 0.0 | 0.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 119 | 002.0123 | 18-JUN-2003 | saco | 40 | 1 | 45 | 0 | 1278.0 | 1245.5 | na | na | na | 0 | 40 | $\bigcirc$ |
| 120 | 052.0602 | 09-JUN-2003 | saco | 40 | 1 | 135 | 0 | 452.0 | 420.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 121 | 036.0521 | 17-APR-2003 | mdct | 40 | 1 | 67 | 0 | 896.6 | 871.4 | na | na | na | 20 | 40 | $\bigcirc$ |
| 122 | 058.0145 | 01-JUL-2003 | pemi | 40 | 1 | 123 | 0 | 802.6 | 788.9 | na | na | na | 0 | 40 | $\bigcirc$ |
| 123 | 187.0557 | 13-MAR-2003 | saco | 40 | 1 | 125 | 0 | 410.0 | 407.0 | na | na | na | 80 | 120 | $\bigcirc$ |
| 124 | 193.0475 | 16-OCT-2003 | upct | 40 | 1 | 37 | 0 | 1599.0 | 1597.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 125 | 197.0237 | 23-MAY-2003 | pemi | 40 | 1 | 22 | 0 | 556.6 | 554.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 126 | 202.0625 | 05-DEC-2001 | Iwct | 40 | 1 | 10 | 0 | 0.0 | 0.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 127 | 236.0308 | 05-MAR-2003 | pemi | 40 | 1 | 44 | 0 | 707.4 | 674.4 | na | na | na | 40 | 80 | $\bigcirc$ |
| 128 | 236.0310 | 20-MAR-2003 | pemi | 40 | 1 | 115 | 0 | 582.2 | 554.2 | na | na | na | 80 | 120 | $\bigcirc$ |
| 129 | 236.0314 | 18-JUN-2003 | pemi | 40 | 1 | 35 | 0 | 660.0 | 634.6 | na | na | na | 0 | 40 | $\bigcirc$ |
| 130 | 253.0209 | 18-APR-2002 | cont | 40 | 1 | 20 | 0 | 768.4 | 728.1 | na | na | na | 0 | 40 | $\bigcirc$ |
| 131 | 253.0229 | 03-APR-2003 | cont | 40 | 1 | 25 | 0 | 667.0 | 655.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 132 | 145.0143 | 06-NOV-2003 | mdct | 40 | 1 | 28 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 133 | 016.0334 | 21-OCT-2003 | saco | 40 | 1 | 115 | 0 | 660.0 | 632.5 | na | na | na | 40 | 80 | $\bigcirc$ |
| 134 | 016.0337 | 23-DEC-2003 | saco | 40 | 1 | 120 | 0 | 547.5 | 511.0 | na | na | na | 40 | 80 | $\bigcirc$ |
| 135 | 036.0580 | 20-OCT-2003 | mdct | 40 | 1 | 55 | 0 | 814.3 | 810.0 | na | na | na | 20 | 40 | $\bigcirc$ |
| 136 | 037.0619 | 19-DEC-2003 | lamp | 20 | 1 | 12 | 0 | 325.0 | 321.3 | na | na | na | 0 | 20 | $\bigcirc$ |
| 137 | 061.0821 | 05-DEC-2003 | lamp | 20 | 1 | 12 | 0 | 437.0 | 431.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 138 | 067.0355 | 13-OCT-2003 | coch | 20 | 1 | 85 | 0 | 10.0 | 2.0 | na | na | na | 10 | 20 | $\bigcirc$ |
| 139 | 239.0547 | 23-DEC-2003 | winn | 20 | 1 | 92 | 0 | 528.3 | 517.5 | na | na | na | 0 | 20 | $\bigcirc$ |
| 140 | 259.0094 | 13-NOV-2003 | pemi | 40 | 1 | 49 | 0 | 687.0 | 648.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 141 | 183.0874 | 14-NOV-2003 | lamp | 20 | 1 | 18 | 0 | 453.0 | 451.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 142 | 231.0307 | 29-JAN-2004 | cont | 40 | 1 | 60 | 0 | 909.1 | 906.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 143 | 031.0244 | 25-MAY-2004 | pemi | 40 | 1 | 15 | 0 | 600.0 | 586.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 144 | 249.0122 | 23-MAY-2004 | pemi | 40 | 1 | 50 | 0 | 610.1 | 592.6 | na | na | na | 0 | 40 | $\bigcirc$ |
| 145 | 172.0355 | 24-APR-2004 | pemi | 40 | 1 | 180 | 0 | 710.0 | 661.8 | na | na | na | 0 | 40 | $\bigcirc$ |
| 146 | 239.0560 | 02-APR-2004 | winn | 20 | 1 | 80 | 0 | 580.0 | 561.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 147 | 164.1454 | 08-APR-2004 | winn | 20 | 1 | 58 | 0 | 522.1 | 515.9 | na | na | na | 0 | 20 | $\bigcirc$ |
| 148 | 129.0873 | 03-JUN-2004 | Immk | 20 | 1 | 15 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 149 | 239.0564 | 24-JUN-2004 | winn | 20 | 1 | 13 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 150 | 006.1337 | 14-JUN-2004 | winn | 20 | 1 | 15 | 0 | 539.0 | 536.8 | na | na | na | 20 | 40 | - |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | Date Completed | USGS Study | $\left\|\begin{array}{l} (\mathrm{ft}) \\ \mathrm{sTI} \end{array}\right\|$ | AGeo | $\begin{array}{\|c} \begin{array}{c} \text { Depth } \\ (\mathrm{ft} \mathrm{bgs}) \mathrm{t} \end{array} \\ \hline \text { Bedrock } \\ \hline \end{array}$ | $\frac{\text { to }}{1 \text { Till }}$ | $\begin{aligned} & \begin{array}{l} \text { Interp } \\ \text { (ft m } \\ \text { Land } \\ \text { Elev } \end{array} \end{aligned}$ | polated <br> msl ) <br> Water <br> Table | $\begin{array}{\|c\|} \hline \text { Satul } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ | $\begin{aligned} & \text { urated } \\ & \begin{array}{\|c\|c\|} \text { Actu } \\ \text { Clas } \\ \hline \text { Min } \mid \end{array} \end{aligned}$ |  | $\begin{aligned} & \text { ckness } \\ & \begin{array}{c} \text { Mapp } \\ \text { Clas } \\ \text { Min } \end{array} \end{aligned}$ |  | OCU |
| 151 | 052.0653 | 23-JUN-2004 | saco | 40 | 1 | 75 | 0 | 419.1 | 412.7 | na | na | na | 0 | 40 | - |
| 152 | 002.0135 | 08-JUN-2004 | saco | 40 | 1 | 50 | 0 | 560.0 | 553.7 | na | na | na | 0 | 40 | $\bigcirc$ |
| 153 | 052.0655 | 19-JUN-2004 | saco | 40 | 1 | 165 | 0 | 495.3 | 470.3 | na | na | na | 120 | 160 | $\bigcirc$ |
| 154 | 006.1354 | 07-JUL-2004 | winn | 20 | 1 | 20 | 0 | 553.7 | 520.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 155 | 052.0661 | 26-JUL-2004 | saco | 40 | 1 | 165 | 0 | 443.1 | 407.0 | na | na | na | 80 | 120 | $\bigcirc$ |
| 156 | 164.1483 | 15-MAR-2004 | winn | 20 | 1 | 30 | 0 | 561.0 | 541.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 157 | 021.0720 | 05-MAY-2004 | winn | 20 | 1 | 10 | 0 | 802.0 | 760.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 158 | 016.0350 | 01-SEP-2004 | saco | 40 | 1 | 120 | 0 | 729.1 | 726.2 | na | na | na | 0 | 40 | $\bigcirc$ |
| 159 | 061.0853 | 13-OCT-2004 | upmk | 20 | 1 | 50 | 0 | 530.0 | 520.0 | na | na | na | 20 | 40 | $\bigcirc$ |
| 160 | 203.0704 | 02-DEC-2004 | coch | 20 | 1 | 18 | 0 | 253.0 | 0.0 | na | na | na | 10 | 20 | $\bigcirc$ |
| 161 | 187.0651 | 05-NOV-2004 | saco | 40 | 1 | 50 | 0 | 741.0 | 722.2 | na | na | na | 0 | 40 | $\bigcirc$ |
| 162 | 149.0528 | 07-DEC-2004 | saco | 40 | 1 | 145 | 0 | 482.0 | 441.0 | na | na | na | 40 | 80 | $\bigcirc$ |
| 163 | 052.0682 | 05-JAN-2005 | saco | 40 | 1 | 35 | 0 | 472.0 | 447.2 | na | na | na | 0 | 40 | $\bigcirc$ |
| 164 | 210.0600 | 26-NOV-2004 | pemi | 40 | 1 | 60 | 0 | 517.9 | 480.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 165 | 040.0285 | 11-MAY-2005 | winn | 20 | 1 | 40 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 166 | 016.0371 | 09-JUN-2005 | saco | 40 | 1 | 135 | 0 | 812.4 | 800.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 167 | 091.0825 | 17-JUN-2005 | upmk | 20 | 1 | 130 | 0 | 630.0 | 625.0 | na | na | na | 80 | 100 | $\bigcirc$ |
| 168 | 241.0868 | 22-JUN-2005 | saco | 40 | 1 | 110 | 0 | 576.6 | 558.0 | na | na | na | 40 | 80 | $\bigcirc$ |
| 169 | 118.0398 | 24-MAY-2005 | pemi | 40 | 1 | 55 | 0 | 571.9 | 567.3 | na | na | na | 0 | 40 | $\bigcirc$ |
| 170 | 088.0421 | 07-JUL-2005 | saco | 40 | 1 | 227 | 0 | 435.0 | 408.5 | na | na | na | 80 | 120 | $\bigcirc$ |
| 171 | 225.1006 | 08-JUN-2005 | lamp | 20 | 1 | 19 | 0 | 0.0 | 0.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 172 | 182.0847 | 11-AUG-2005 | upmk | 20 | 1 | 18 | 0 | 585.0 | 580.0 | na | na | na | 0 | 20 | $\bigcirc$ |
| 173 | 063.1856 | 30-AUG-2005 | lwm | 20 | 1 | 65 | 0 | 208.3 | 206.0 | na | na | na | 80 | 100 | $\bigcirc$ |
| 174 | 015.1232 | 01-SEP-2005 | coch | 20 | 1 | 45 | 0 | 0.0 | 0.0 | na | na | na | 40 | 60 | $\bigcirc$ |
| 175 | 090.0824 | 08-JUL-2005 | winn | 20 | 1 | 55 | 0 | 1000.0 | 993.2 | na | na | na | 0 | 20 | $\bigcirc$ |
| 176 | 190.0266 | 09-NOV-2005 | cont | 40 | 1 | 100 | 0 | 724.0 | 706.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 177 | 203.0787 | 29-NOV-2005 | coch | 20 | 1 | 38 | 0 | 0.0 | 0.0 | na | na | na | 10 | 20 | $\bigcirc$ |
| 178 | 025.0326 | 04-NOV-2005 | mdct | 40 | 1 | 13 | 0 | 996.2 | 988.5 | na | na | na | 0 | 40 | $\bigcirc$ |
| 179 | 052.0730 | 12-DEC-2005 | saco | 40 | 1 | 14 | 0 | 460.0 | 453.4 | na | na | na | 0 | 40 | $\bigcirc$ |
| 180 | 233.0538 | 23-DEC-2005 | saco | 40 | 1 | 17 | 0 | 0.0 | 0.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 181 | 127.0359 | 07-MAR-2006 | lamp | 20 | 1 | 54 | 0 | 123.4 | 120.5 | na | na | na | 0 | 20 | $\bigcirc$ |
| 182 | 108.0469 | 01-JUN-2006 | mdct | 40 | 1 | 73 | 0 | 499.0 | 460.0 | na | na | na | 0 | 40 | $\bigcirc$ |
| 183 | 067.0402 | 25-MAY-2006 | coch | 20 | 1 | 14 | 0 | 0.0 | 0.0 | na | na | na | 0 | 10 | $\bigcirc$ |
| 184 | 048.0122 | 15-JUN-2006 | upct | 40 | 1 | 13 | 0 | 1531.2 | 1525.6 | na | na | na | 0 | 40 | $\bigcirc$ |
| 185 | 088.0476 | 19-JUN-2006 | cont | 40 | 1 | 100 | 0 | 640.0 | 631.4 | na | na | na | 0 | 40 | $\bigcirc$ |
| 186 | 187.0553 | 19-FEB-2003 | saco | 40 | 1 | 70 | 50 | 440.0 | 408.7 | na | na | na | 40 | 80 | $\bigcirc$ |
| 187 | 247.1610 | 15-OCT-2004 | mdmk | 20 | 2 | 29 | na | 685.0 | 637.9 | -18.1 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 188 | 236.0402 | 03-MAY-2005 | pemi | 40 | 2 | 15 | na | 631.0 | 598.0 | -18.0 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 189 | 119.0597 | 20-MAY-1994 | nrpc | 20 | 2 | 38 | na | 353.0 | 302.5 | -12.5 | 0 | 10 | 20 | 40 | $\bigcirc$ |
| 190 | 119.0608 | 18-NOV-1994 | nrpc | 20 | 2 | 22 | na | 343.7 | 309.5 | -12.2 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 191 | 033.0262 | 20-AUG-1990 | nrpc | 20 | 2 | 10 | na | 292.0 | 270.0 | -12.0 | 0 | 10 | 20 | 40 | $\bigcirc$ |
| 192 | 051.0652 | 22-SEP-2003 | upmk | 20 | 2 | 30 | na | 339.0 | 297.0 | -12.0 | 0 | 20 | 60 | 80 | $\bigcirc$ |
| 193 | 033.1140 | 22-NOV-2005 | nrpc | 20 | 2 |  | na | 197.8 | 176.8 | -11.0 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 194 | 139.0179 | 05-OCT-1994 | nrpc | 20 | 2 | 20 | na | 208.5 | 180.0 | -8.5 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 195 | 007.0461 | 12-JUL-1994 | nrpc | 20 | 2 | 14 | na | 248.0 | 226.2 | -7.8 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 196 | 156.0526 | 27-JUN-2000 | nrpc | 20 | 2 | 15 | na | 165.0 | 142.5 | -7.5 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 197 | 135.0521 | 19-SEP-2000 | lamp | 20 | 2 | 25 | na | 185.9 | 154.0 | -6.9 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 198 | 007.0284 | 06-OCT-1988 | nrpc | 20 | 2 | 18 | na | 271.0 | 248.0 | -5.0 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 199 | 176.0413 | 30-JAN-2003 | lamp | 20 | 2 | 12 | na | 118.0 | 102.0 | -4.0 | 0 | 20 | 20 | 40 | - |
| 200 | 170.0580 | 15-SEP-2005 | winn | 20 | 2 |  | na | 607.8 | 586.0 | -3.8 | 0 | 20 | 20 | 40 | - |


|  | Characteristics for 1300 Verification Wells |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology $1=100 \%$ Till $2=$ Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | (ft) |  | $\begin{gathered} \text { Depth } \\ \text { (ft bgs) to } \\ \hline \end{gathered}$ | Interp (ft <br> Land | $\begin{aligned} & \text { polated } \\ & \text { msl) } \\ & \left\|\begin{array}{l} \text { Water } \end{array}\right\| \end{aligned}$ | Catc | arated <br> Actu <br> Cla |  |  |  |  |
| 201 | W68. 0390 | Completed | Study | Sti | AGeo | Bedrock/ 10 Till | Elev | Table | ST | Min | $\frac{\text { Max }}{10}$ | Min | Max | Cu |
| 202 | 139.0148 | 12-JAN-1993 | nrpc | 20 | 2 | 15 na | 145.3 | 127.3 | -3.0 | 0 | 10 | 20 | 40 | $\bigcirc$ |
| 203 | 139.0418 | 15-SEP-2005 | nrpc | 20 | 2 | 10 na | 216.0 | 203.7 | -2.3 | 0 | 10 | 10 | 20 | - |
| 204 | 119.1332 | 14-JUN-2006 | nrpc | 20 | 2 | 12 na | 184.0 | 170.3 | -1.7 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 205 | 189.0300 | 29-JUN-2001 | upmk | 20 | 2 | 13 na | 241.0 | 227.0 | -1.0 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 206 | 078.0552 | 17-DEC-2002 | lamp | 20 | 2 | 21 na | 150.0 | 128.0 | -1.0 | 0 | 20 | 40 | 60 | $\bigcirc$ |
| 207 | 033.0724 | 18-OCT-1996 | nrpc | 20 | 2 | 18 na | 265.7 | 247.0 | -0.7 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 208 | 133.0123 | 13-OCT-1998 | Iwct | 40 | 2 | 15 na | 452.8 | 437.2 | -0.6 | 0 | d0 | 40 | 80 | $\bigcirc$ |
| 209 | 119.0543 | 09-NOV-1993 | nrpc | 20 | 2 | 38 na | 241.0 | 203.0 | 0.0 | 0 | 10 | 20 | 40 | - |
| 210 | 139.0164 | 14-JAN-1994 | nrpc | 20 | 2 | 20 na | 182.2 | 162.2 | 0.0 | 0 | 10 | 10 | 20 | - |
| 211 | 021.0787 | 25-JUL-2006 | winn | 20 | 2 | 15 na | 480.0 | 465.0 | 0.0 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 212 | 165.0052 | 11-JUN-1992 | nrpc | 20 | 2 | 17 na | 226.4 | 210.0 | 0.6 | 0 | 10 | 10 | 20 | $\bigcirc$ |
| 213 | 037.0641 | 21-SEP-2004 | mdmk | 20 | 2 | 25 na | 337.0 | 314.0 | 2.0 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 214 | 091.0658 | 17-JUL-2001 | upmk | 20 | 2 | 30 na | 652.2 | 625.0 | 2.8 | 0 | 20 | 40 | 60 | - |
| 215 | 067.0311 | 11-APR-1999 | coch | 20 | 2 | 20 na | 171.3 | 154.3 | 3.0 | 0 | 10 | 20 | 40 | $\bigcirc$ |
| 216 | 139.0162 | 08-SEP-1993 | nrpc | 20 | 2 | 31 na | 191.5 | 163.7 | 3.2 | 0 | 10 | 20 | 40 | $\bigcirc$ |
| 217 | 017.0123 | 08-MAY-2002 | mdct | 40 | 2 | 46 na | 743.7 | 701.0 | 3.3 | 0 | 20 | 20 | 40 | - |
| 218 | 156.0304 | 29-NOV-1989 | nrpc | 20 | 2 | 19 na | 223.0 | 207.5 | 3.5 | 0 | 10 | 10 | 20 | - |
| 219 | 033.0205 | 15-JUN-1988 | nrpc | 20 | 2 | 10 na | 236.2 | 230.0 | 3.8 | 0 | 10 | 20 | 40 | - |
| 220 | 119.0296 | 13-MAY-1988 | nrpc | 20 | 2 | 25 na | 194.6 | 173.4 | 3.8 | 0 | 10 | 20 | 40 | $\bigcirc$ |
| 221 | 119.1329 | 14-DEC-2005 | nrpc | 20 | 2 | 21 na | 215.0 | 198.5 | 4.5 | 0 | 10 | 10 | 20 | - |
| 222 | 239.0409 | 04-JAN-2001 | winn | 20 | 2 | 12 na | 511.0 | 504.0 | 5.0 | 0 | 20 | 20 | 40 | - |
| 223 | 119.0647 | 29-APR-1995 | nrpc | 20 | 2 | 15 na | 208.0 | 198.0 | 5.0 | 0 | 10 | 10 | 20 | - |
| 224 | 139.0091 | 27-DEC-1990 | nrpc | 20 | 2 | 27 na | 209.0 | 187.7 | 5.7 | 0 | 10 | 10 | 20 | - |
| 225 | 112.0274 | 10-MAY-2001 | mdct | 40 | 2 | 18 na | 467.6 | 455.7 | 6.1 | 0 | 40 | 40 | 80 | - |
| 226 | 139.0304 | 30-APR-1998 | nrpc | 20 | 2 | 17 na | 132.0 | 121.2 | 6.2 | 0 | 10 | 40 | 60 | - |
| 227 | 188.0443 | 26-JUL-1993 | nrpc | 20 | 2 | 26 na | 151.2 | 131.6 | 6.4 | 0 | 10 | 40 | 60 | - |
| 228 | 139.0068 | 23-JUN-1988 | nrpc | 20 | 2 | 21 na | 132.0 | 118.0 | 7.0 | 0 | 10 | 40 | 60 | $\bigcirc$ |
| 229 | 020.2409 | 29-MAR-2002 | mdmk | 20 | 2 | 18 na | 192.0 | 182.0 | 8.0 | 0 | 20 | 40 | 60 | $\bigcirc$ |
| 230 | 232.0277 | 17-MAR-1988 | Iwct | 40 | 2 | 25 na | 536.4 | 521.0 | 9.6 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 231 | 239.0394 | 16-JUN-2000 | winn | 20 | 2 | 20 na | 514.0 | 504.0 | 10.0 | 0 | 20 | 40 | 60 | - |
| 232 | 135.0634 | 08-JUL-2004 | coch | 20 | 2 | 22 na | 170.0 | 158.0 | 10.0 | 0 | 10 | 10 | 20 | - |
| 233 | 170.0602 | 19-JUN-2006 | winn | 20 | 2 | 20 na | 539.0 | 529.5 | 10.5 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 234 | 119.0522 | 21-JUN-1993 | nrpc | 20 | 2 | 11 na | 202.0 | 201.8 | 10.8 | 10 | 20 | 20 | 40 | - |
| 235 | 028.0248 | 10-OCT-2005 | cont | 40 | 2 | 15 na | 824.0 | 820.0 | 11.0 | 0 | 40 | 40 | 80 | - |
| 236 | 093.1285 | 20-JUL-2006 | mdmk | 20 | 2 | 33 na | 177.0 | 156.6 | 12.6 | 0 | 20 | 20 | 40 | - |
| 237 | 078.0002 | 15-MAR-1984 | lamp | 20 | 2 | 28 na | 165.0 | 150.0 | 13.0 | 0 | 20 | 20 | 40 | - |
| 238 | 013.0900 | 07-MAR-2005 | mdmk | 20 | 2 | 40 na | 313.0 | 286.0 | 13.0 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 239 | 171.0280 | 10-JUL-2006 | lamp | 20 | 2 | 24 na | 114.0 | 103.0 | 13.0 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 240 | 006.1471 | 11-AUG-2005 | winn | 20 | 2 | 23 na | 593.2 | 584.1 | 13.9 | 0 | 20 | 60 | 80 | $\bigcirc$ |
| 241 | 241.0759 | 09-APR-2004 | coch | 20 | 2 | 25 na | 596.1 | 585.2 | 14.1 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 242 | 036.0680 | 24-APR-2006 | mdct | 40 | 2 | 17 na | 993.9 | 991.0 | 14.1 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 243 | 188.0227 | 22-AUG-1988 | nrpc | 20 | 2 | 22 na | 146.7 | 139.5 | 14.8 | 10 | 20 | 20 | 40 | - |
| 244 | 159.0299 | 21-SEP-1993 | nrpc | 20 | 2 | 27 na | 280.0 | 268.0 | 15.0 | 10 | 20 | 20 | 40 | $\bigcirc$ |
| 245 | 211.0546 | 29-AUG-1997 | lamp | 20 | 2 | 20 na | 217.0 | 212.0 | 15.0 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 246 | 242.0233 | 29-NOV-2000 | Iwct | 40 | 2 | 60 na | 472.4 | 428.0 | 15.6 | 0 | 40 | 40 | 80 | - |
| 247 | 036.0454 | 26-AUG-2002 | mdct | 40 | 2 | 22 na | 960.8 | 954.9 | 16.1 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 248 | 015.1275 | 08-MAY-2006 | coch | 20 | 2 | 20 na | 198.0 | 195.0 | 17.0 | 10 | 20 | 40 | 60 | $\bigcirc$ |
| 249 | 188.1292 | 21-JAN-2002 | nrpc | 20 | 2 | 25 na | 135.5 | 127.6 | 17.1 | 10 | 20 | 20 | 40 | $\bigcirc$ |
| 250 | 258.0614 | 23-JAN-2004 | winn | 20 | 2 | 52 na | 648.5 | 614.0 | 17.5 | 0 | 20 | 20 | 40 | 0 |


|  | Characteristics for 1300 Verification Wells |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology $1=100 \%$ Till $2=$ Bedrock Bottom $3=$ Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| We | WRB | $\begin{gathered} \text { Date } \\ \text { Completed } \end{gathered}$ | USGS Study | $\left\|\begin{array}{l} (\mathrm{ft}) \\ \mathrm{sTI} \end{array}\right\|$ |  | $\frac{\begin{array}{r} \text { Depth } \\ \text { (ft bgs) } \end{array}}{\text { Bedrock }{ }^{-}}$ | $\frac{\text { to }}{1)_{\text {Till }}}$ | $\begin{array}{r} \text { Interpo } \\ \text { (ft m } \\ \text { Land } \\ \text { Elev } \end{array}$ | $\begin{aligned} & \text { polated } \\ & \text { msI) } \\ & \text { Water } \\ & \text { Table } \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ | $\begin{aligned} & \text { urated } \\ & \begin{array}{c} \text { Actu } \\ \text { Clas } \\ \text { Minn } \end{array} \end{aligned}$ | Thick | kness <br> Map <br> Cla <br> Min |  |  |
| 251 | 078.0681 | 04-OCT-2005 | lamp | 20 | 2 | 30 | na | 155.0 | 142.5 | 17.5 | , | 20 | 40 | 60 | 0 |
| 252 | 021.0752 | 12-SEP-2005 | winn | 20 | 2 | 34 | na | 505.7 | 489.9 | 18.2 | 0 | 20 | 40 | 60 | 0 |
| 253 | 119.0289 | 18-MAR-1988 | nrpc | 20 | 2 | 34 | na | 203.0 | 187.3 | 18.3 | 10 | 20 | 20 | 40 | $\bigcirc$ |
| 254 | 146.0300 | 06-JUN-2006 | mdct | 40 | 2 | 40 | na | 420.0 | 398.3 | 18.3 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 255 | 051.0585 | 18-JUL-2000 | upmk | 20 | 2 | 60 | na | 360.0 | 319.0 | 19.0 | 0 | 20 | 60 | 80 | $\bigcirc$ |
| 256 | 180.0231 | 23-OCT-2003 | Immk | 20 | 2 | 31 | na | 103.0 | 91.0 | 19.0 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 257 | 217.0038 | 29-JUN-2004 | coch | 20 | 2 | 25 | na | 196.0 | 190.0 | 19.0 | 10 | 20 | 40 | 60 | $\bigcirc$ |
| 258 | 241.0723 | 15-JUL-2003 | coch | 20 | 2 | 30 | na | 520.0 | 509.3 | 19.3 | 0 | 20 | 20 | 40 | $\bigcirc$ |
| 259 | 188.1406 | 10-JUL-2003 | nrpc | 20 | 2 |  | na | 129.3 | 121.7 | 19.4 | 10 | 20 | 20 | 40 | - |
| 260 | 045.0630 | 10-NOV-2003 | Iwct | 40 | 2 | 47 | na | 319.7 | 292.6 | 19.9 | 0 | 40 | 40 | 80 | - |
| 261 | 232.0746 | 02-AUG-2004 | lwct | 40 | 2 | 25 | na | 463.1 | 458.0 | 19.9 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 262 | 135.0620 | 06-NOV-2003 | lamp | 20 | 2 | 50 | na | 144.0 | 114.0 | 20.0 | 20 | 40 | 40 | 60 | - |
| 263 | 241.0863 | 02-JUN-2005 | saco | 40 | 2 | 30 | na | 627.4 | 617.5 | 20.1 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 264 | 202.0630 | 22-AUG-2003 | Iwct | 40 | 2 | 28 | na | 1053.1 | 1046.6 | 21.5 | 0 | 40 | 40 | 80 | - |
| 265 | 090.0825 | 05-JUL-2005 | winn | 20 | 2 |  | na | 552.0 | 545.0 | 23.0 | 20 | 40 | 40 | 60 | $\bigcirc$ |
| 266 | 122.1115 | 29-NOV-2003 | nrpc | 20 | 2 | 36 | na | 121.4 | 109.2 | 23.8 | 20 | 40 | 40 | 60 | $\bigcirc$ |
| 267 | 139.0422 | 16-MAR-2006 | nrpc | 20 | 2 | 55 | na | 132.0 | 100.8 | 23.8 | 20 | 40 | 40 | 60 | - |
| 268 | 035.0463 | 20-DEC-2005 | pemi | 40 | 2 |  | na | 570.0 | 557.1 | 24.1 | 0 | 40 | 80 | 120 | - |
| 269 | 188.0274 | 19-SEP-1989 | nrpc | 20 | 2 | 42 | na | 154.2 | 137.1 | 24.9 | 20 | 40 | 60 | 80 | - |
| 270 | 007.0384 | 21-JUN-1993 | nrpc | 20 | 2 | 36 | na | 230.0 | 219.0 | 25.0 | 20 | 40 | 40 | 60 | - |
| 271 | 020.2373 | 20-JUN-2002 | Immk | 20 | 2 | 47 | na | 215.0 | 193.0 | 25.0 | 20 | 40 | 60 | 80 | - |
| 272 | 220.0081 | 19-AUG-2003 | upct | 40 | 2 | 38 | na | 1080.0 | 1067.0 | 25.0 | 0 | 40 | 40 | 80 | - |
| 273 | 187.0618 | 12-MAY-2004 | saco | 40 | 2 | 60 | na | 569.0 | 534.1 | 25.1 | 0 | 40 | 40 | 80 | - |
| 274 | 188.0222 | 12-SEP-1988 | nrpc | 20 | 2 | 38 | na | 155.0 | 142.2 | 25.2 | 20 | 40 | 40 | 60 | - |
| 275 | 232.0802 | 21-APR-2006 | lwct | 40 | 2 | 46 | na | 475.7 | 456.1 | 26.4 | 0 | 40 | 80 | 120 | - |
| 276 | 047.0154 | 25-SEP-2000 | Iwct | 40 | 2 | 45 | na | 346.1 | 327.6 | 26.5 | 0 | 40 | 40 | 80 | - |
| 277 | 022.0083 | 18-OCT-2001 | cont | 40 | 2 | 45 | na | 710.0 | 692.0 | 27.0 | 0 | 40 | 40 | 80 | - |
| 278 | 188.0879 | 19-OCT-1999 | nrpc | 20 | 2 | 30 | na | 131.9 | 129.0 | 27.1 | 20 | 40 | 40 | 60 | $\bigcirc$ |
| 279 | 233.0558 | 29-OCT-2003 | saco | 40 | 2 | 33 | na | 487.3 | 483.0 | 28.7 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 280 | 112.0220 | 18-NOV-1998 | mdct | 40 | 2 |  | na | 460.0 | 459.0 | 29.0 | 20 | 40 | 40 | 80 | $\bigcirc$ |
| 281 | 074.0094 | 29-APR-2006 | saco | 40 | 2 |  | na | 499.0 | 483.3 | 29.3 | 0 | 40 | 40 | 80 | - |
| 282 | 036.0414 | 07-OCT-1999 | mdct | 40 | 2 | 35 | na | 944.0 | 938.8 | 29.8 | 20 | 40 | 40 | 80 | $\bigcirc$ |
| 283 | 241.0510 | 06-APR-1999 | saco | 40 | 2 | 34 | na | 562.0 | 559.0 | 31.0 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 284 | 051.0686 | 22-MAR-2004 | cont | 40 | 2 |  | na | 370.5 | 351.9 | 31.4 | 0 | 40 | 40 | 80 | - |
| 285 | 148.0149 | 31-JUL-1997 | lamp | 20 | 2 | 45 | na | 95.4 | 82.3 | 31.9 | 20 | 40 | 40 | 60 | - |
| 286 | 139.0382 | 07-NOV-2000 | nrpc | 20 | 2 | 55 | na | 138.0 | 116.0 | 33.0 | 20 | 40 | 40 | 60 | $\bigcirc$ |
| 287 | 232.0708 | 10-OCT-2003 | Iwct | 40 | 2 |  | na | 603.7 | 590.6 | 33.9 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 288 | 249.0135 | 25-JUN-2005 | pemi | 40 | 2 | 35 | na | 539.0 | 538.0 | 34.0 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 289 | 167.1067 | 02-MAY-2005 | mdmk | 20 | 2 | 57 | na | 668.0 | 645.2 | 34.2 | 20 | 40 | 60 | 80 | $\bigcirc$ |
| 290 | 002.0085 | 19-JUN-1997 | saco | 40 | 2 | 40 | na | 1241.0 | 1235.2 | 34.2 | 0 | 40 | 80 | 120 | - |
| 291 | 038.0411 | 16-JUN-2004 | upmk | 20 | 2 | 48 | na | 327.7 | 314.1 | 34.4 | 20 | 40 | 40 | 60 | $\bigcirc$ |
| 292 | 016.0229 | 25-OCT-1997 | saco | 40 | 2 | 45 | na | 594.9 | 585.0 | 35.1 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 293 | 090.0808 | 24-SEP-2004 | winn | 20 | 2 | 40 | na | 523.7 | 519.3 | 35.6 | 20 | 40 | 40 | 60 | - |
| 294 | 241.0546 | 14-APR-1999 | saco | 40 | 2 | 60 | na | 602.0 | 577.8 | 35.8 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 295 | 079.0346 | 21-APR-1999 | upmk | 20 | 2 | 45 | na | 313.8 | 305.0 | 36.2 | 20 | 40 | 40 | 60 | $\bigcirc$ |
| 296 | 165.0085 | 16-JUN-1994 | nrpc | 20 | 2 | 38 | na | 113.9 | 113.0 | 37.1 | 20 | 40 | 40 | 60 | - |
| 297 | 122.1151 | 15-SEP-2004 | nrpc | 20 | 2 | 48 | na | 139.8 | 130.0 | 38.2 | 20 | 40 | 40 | 60 | $\bigcirc$ |
| 298 | 007.0339 | 11-SEP-1991 | nrpc | 20 | 2 |  | na | 221.0 | 194.2 | 38.2 | 20 | 40 | 60 | 80 | $\bigcirc$ |
| 299 | 241.0755 | 05-APR-2004 | saco | 40 | 2 | 47 | na | 488.6 | 480.0 | 38.4 | 0 | 40 | 40 | 80 | $\bigcirc$ |
| 300 | 025.0289 | 29-JUL-2004 | mdct | 40 | 2 | 62 |  | 1074.7 | 1051.3 | 38.6 | 20 | 40 | 120 | 160 | - |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | Date Completed | USGS Study | $\left\|\begin{array}{l} (\mathrm{ft}) \\ \mathrm{sTI} \end{array}\right\|$ | AGeo | $\begin{array}{\|c} \begin{array}{c} \text { Depth } \\ (\mathrm{ft} \mathrm{bgs)} \mathrm{t} \end{array} \\ \hline \text { Bedrock } \end{array}$ | $\frac{1 \text { to }}{1 \text { Till\| }}$ | $\begin{array}{r} \begin{array}{r} \text { Interp } \\ \text { (ft m } \\ \text { Land } \\ \text { Elev } \end{array} \\ \hline \end{array}$ | $\begin{aligned} & \text { polated } \\ & \text { mst) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{gathered} \text { Satur } \\ \text { Calc } \\ \text { ST } \end{gathered}$ |  |  |  | $\begin{aligned} & \text { sif( ft) } \\ & \text { oped } \\ & \text { ass } \\ & \hline \text { Max } \end{aligned}$ | OCU |
| 301 | 122.1076 | 19-JUL-2002 | nrpc | 20 |  | 54 | na | 114.9 | 100.0 | 39.1 | 20 | 40 | 40 | 60 | 0 |
| 302 | 038.0333 | 19-SEP-2002 | upmk | 20 | 2 | 88 | na | 312.3 | 263.7 | 39.4 | 20 | 40 | 40 | 60 | $\bigcirc$ |
| 303 | 203.0402 | 16-FEB-1999 | coch | 20 | 2 | 65 | na | 250.0 | 225.1 | 40.1 | 40 | 60 | 60 | 80 | - |
| 304 | 021.0767 | 11-OCT-2005 | winn | 20 | 2 | 50 | na | 487.5 | 482.0 | 44.5 | 40 | 60 | 60 | 80 | $\bigcirc$ |
| 305 | 007.1138 | 07-NOV-2005 | nrpc | 20 | 2 | 62 | na | 228.5 | 211.4 | 44.9 | 40 | 60 | 60 | 80 | $\bigcirc$ |
| 306 | 111.0004 | 12-DEC-1997 | saco | 40 | 2 | 55 | na | 505.1 | 498.0 | 47.9 | 40 | 80 | 80 | 120 | 0 |
| 307 | 254.0067 | 23-SEP-1987 | nrpc | 20 | 2 | 53 | na | 476.7 | 472.0 | 48.3 | 40 | 60 | 60 | 80 | $\bigcirc$ |
| 308 | 183.0768 | 24-OCT-2001 | lamp | 20 | 2 | 67 | na | 157.0 | 140.0 | 50.0 | 40 | 60 | 60 | 80 | $\bigcirc$ |
| 309 | 117.0173 | 17-SEP-2001 | Iwct | 40 | 2 | 68 | na | 334.6 | 316.9 | 50.3 | 40 | 80 | 80 | 120 | $\bigcirc$ |
| 310 | 165.0190 | 31-OCT-2003 | nrpc | 20 | 2 | 64 | na | 203.7 | 190.0 | 50.3 | 40 | 60 | 60 | 80 | $\bigcirc$ |
| 311 | 057.0187 | 17-MAY-2006 | mdct | 40 | 2 | 67 | na | 876.0 | 860.0 | 51.0 | 40 | 80 | 80 | 120 | $\bigcirc$ |
| 312 | 007.0390 | 11-SEP-1993 | nrpc | 20 | 2 | 66 | na | 232.0 | 220.0 | 54.0 | 40 | 60 | 80 | 100 | 0 |
| 313 | 015.1112 | 18-FEB-2004 | coch | 20 | 2 | 59 | na | 153.0 | 150.0 | 56.0 | 40 | 60 | 60 | 80 | $\bigcirc$ |
| 314 | 241.0935 | 26-APR-2006 | saco | 40 | 2 | 95 | na | 620.0 | 585.9 | 60.9 | 40 | 80 | 80 | 120 | $\bigcirc$ |
| 315 | 078.0649 | 01-JUL-2005 | lamp | 20 | 2 |  | na | 122.5 | 117.0 | 64.5 | 60 | 80 | 100 | 120 | $\bigcirc$ |
| 316 | 232.0720 | 31-JUL-2003 | Iwct | 40 | 2 | 85 | na | 476.6 | 460.0 | 68.4 | 40 | 80 | 80 | 120 | $\bigcirc$ |
| 317 | 039.0090 | 04-JUN-2004 | mdct | 40 | 2 | 76 | na | 1469.2 | 1464.2 | 71.0 | 40 | 80 | 80 | 120 | $\bigcirc$ |
| 318 | 088.0415 | 07-FEB-2005 | saco | 40 | 2 | 95 | na | 430.0 | 407.0 | 72.0 | 40 | 80 | 80 | 120 | $\bigcirc$ |
| 319 | 236.0303 | 15-AUG-2002 | pemi | 40 | 2 |  | na | 600.0 | 581.4 | 72.4 | 40 | 80 | 80 | 120 | $\bigcirc$ |
| 320 | 086.0225 | 06-OCT-2004 | mdct | 40 | 2 | 86 | na | 1086.8 | 1077.3 | 76.5 | 40 | 80 | 80 | 120 | $\bigcirc$ |
| 321 | 186.0191 | 13-DEC-2003 | mdct | 40 | 2 | 100 | na | 422.0 | 398.9 | 76.9 | 40 |  | 80 | 120 | $\bigcirc$ |
| 322 | 242.0313 | 05-MAR-2004 | Iwct | 40 | 2 |  | na | 264.4 | 252.8 | 78.4 | 40 | 80 | 80 | 120 | - |
| 323 | 090.0028 | 23-DEC-1985 | winn | 20 | 2 | 85 | na | 510.0 | 504.0 | 79.0 | 60 | 80 | 80 | 100 | $\bigcirc$ |
| 324 | 161.0494 | 16-JUN-2005 | coch | 20 | 2 |  | na | 430.0 | 413.0 | 80.0 | 80 | 100 | 120 | 140 | $\bigcirc$ |
| 325 | 187.0407 | 07-MAY-1997 | saco | 40 | 2 | 130 | na | 460.0 | 418.0 | 88.0 | 80 | 120 | 120 | 160 | - |
| 326 | 052.0683 | 11-JAN-2005 | saco | 40 | 2 | 100 | na | 476.7 | 470.0 | 93.3 | 80 | 120 | 120 | 160 | $\bigcirc$ |
| 327 | 148.0195 | 23-SEP-2002 | coch | 20 | 2 | 130 | na | 156.3 | 120.0 | 93.7 | 80 | 100 | 120 | 140 | $\bigcirc$ |
| 328 | 232.0656 | 18-DEC-2001 | Iwct | 40 | 2 | 115 | na | 515.0 | 500.0 | 100.0 | 80 | 120 | 120 | 160 | - |
| 329 | 206.0234 | 12-AUG-2005 | pemi | 40 | 2 | 120 | na | 527.0 | 509.0 | 102.0 | 80 | 120 | 160 | 200 | $\bigcirc$ |
| 330 | 161.0474 | 27-MAY-2005 | coch | 20 | 2 | 134 | na | 438.0 | 413.0 | 109.0 | 100 | 120 | 120 | 140 | $\bigcirc$ |
| 331 | 252.0225 | 14-MAY-2004 | mdct | 40 | 2 | 130 | na | 1030.9 | 1017.0 | 116.1 | 80 | 120 | 120 | 160 | - |
| 332 | 035.0186 | 28-APR-1998 | pemi | 40 | 2 | 190 | na | 645.9 | 605.5 | 149.6 | 120 | 160 | 160 | 200 | $\bigcirc$ |
| 333 | 206.0185 | 30-JAN-2002 | pemi | 40 | 2 | 208 | na | 520.0 | 500.0 | 188.0 | 160 | 200 | 240 | 280 | $\bigcirc$ |
| 334 | 242.0328 | 10-AUG-2005 | Iwct | 40 | 2 | 243 | na | 301.8 | 275.6 | 216.8 | 200 | 240 | 280 | 320 | - |
| 335 | 033.0161 | 31-MAR-1988 | nrpc | 20 | 2 |  | na | 410.1 | 366.0 | -33.1 | 0 | 10 | 0 | 10 | c |
| 336 | 033.0697 | 11-JUN-1996 | nrpe | 20 | 2 | 10 | na | 324.8 | 286.4 | -28.4 | 0 | 10 | 0 | 10 | c |
| 337 | 145.0157 | 30-AUG-2005 | mdct | 40 | 2 |  | na | 933.6 | 886.7 | -25.9 | 0 | 40 | 0 | 40 | c |
| 338 | 138.0167 | 02-MAY-2003 | mdct | 40 | 2 | 16 | na | 724.4 | 683.0 | -25.4 | 0 | 20 | 0 | 20 | c |
| 339 | 119.0300 | 04-MAY-1988 | nrpc | 20 | 2 | 22 | na | 255.9 | 210.0 | -23.9 | 0 | 10 | 0 | 10 | c |
| 340 | 087.0235 | 28-NOV-2005 | pemi | 40 | 2 |  | na | 446.5 | 382.9 | -23.6 | 0 | 40 | 0 | 40 | c |
| 341 | 230.0102 | 16-MAY-2005 | Iwct | 40 | 2 | 18 | na | 561.3 | 520.0 | -23.3 | 0 | 40 | 0 | 40 | c |
| 342 | 139.0155 | 07-JUL-1992 | nrpc | 20 | 2 | 10 | na | 212.0 | 179.0 | -23.0 | 0 | 10 | 0 | 10 | c |
| 343 | 021.0762 | 06-MAY-2005 | winn | 20 | 2 |  | na | 886.8 | 854.8 | -22.0 | 0 | 20 | 0 | 20 | c |
| 344 | 033.0797 | 05-DEC-1997 | nrpc | 20 | 2 | 10 | na | 347.8 | 319.6 | -18.2 | 0 | 10 | 0 | 10 | c |
| 345 | 119.0555 | 29-OCT-1992 | nrpc | 20 | 2 |  | na | 280.0 | 244.0 | -17.0 | 0 | 10 | 0 | 10 | c |
| 346 | 234.0152 | 06-AUG-2001 | mdmk | 20 | 2 | 15 | na | 955.6 | 924.0 | -16.6 | 0 | 20 | 0 | 20 | c |
| 347 | 120.0432 | 15-JAN-1998 | mdmk | 20 | 2 | 10 | na | 280.0 | 253.5 | -16.5 | 0 | 20 | 0 | 20 | c |
| 348 | 206.0216 | 02-APR-2004 | pemi | 40 | 2 |  | na | 614.5 | 560.0 | -16.5 | 0 | 40 | 0 | 40 | c |
| 349 | 143.0595 | 15-MAR-2000 | upmk | 20 | 2 | 25 |  | 369.0 | 328.2 | -15.8 | 0 | 20 | 0 | 20 | c |
| 350 | 119.1229 | 17-NOV-2003 | nrpc | 20 | 2 |  |  | 230.1 | 205.0 | -15.1 | 0 | 10 | 0 | 10 | c |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Well | WRB | Date Completed | USGS | $\begin{aligned} & \binom{(\mathrm{ft}}{\mathrm{sTI}} \end{aligned}$ | AGeo | $\begin{array}{\|c} \begin{array}{c} \text { Depth } \\ \text { (ft bgs) to } \end{array} \\ \hline \text { Bedrock } \end{array} \text { Till }$ | Interp (ft Land Elev | $\begin{aligned} & \text { polated } \\ & \text { mst) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ |  |  |  |  | OCU |
| 351 | 233.0416 | 29-MAY-2002 | saco | 40 | 2 | 20 na | 470.0 | 435.7 | -14.3 | 0 | 40 | 0 | 40 | C |
| 352 | 206.0182 | 29-MAY-2002 | pemi | 40 | 2 | 26 na | 640.0 | 600.0 | -14.0 | 0 | 40 | 0 | 40 | c |
| 353 | 223.0682 | 29-SEP-2005 | upct | 40 | 2 | 35 na | 932.8 | 884.2 | -13.6 | 0 | 40 | 0 | 40 | c |
| 354 | 251.0188 | 08-MAY-2002 | Iwct | 40 | 2 | 17 na | 364.2 | 334.6 | -12.6 | 0 | 40 | 0 | 40 | c |
| 355 | 094.0079 | 14-NOV-2001 | upct | 40 | 2 | 40 na | 1090.0 | 1037.6 | -12.4 | 0 | 40 | 0 | 40 | c |
| 356 | 256.1601 | 10-SEP-1998 | Iwmk | 20 | 2 | 12 na | 210.0 | 185.7 | -12.3 | 0 | 20 | 0 | 20 | c |
| 357 | 036.0684 | 29-MAR-2006 | mdct | 40 | 2 | 18 na | 1025.0 | 995.0 | -12.0 | 0 | 20 | 0 | 20 | c |
| 358 | 089.0550 | 26-SEP-1998 | lamp | 20 | 2 | 15 na | 176.3 | 150.0 | -11.3 | 0 | 20 | 0 | 20 | c |
| 359 | 241.0927 | 10-APR-2006 | saco | 40 | 2 | 26 na | 641.8 | 605.2 | -10.6 | 0 | 40 | 0 | 40 | c |
| 360 | 033.0757 | 06-FEB-1997 | nrpc | 20 | 2 | 13 na | 376.3 | 352.8 | -10.5 | 0 | 10 | 0 | 10 | c |
| 361 | 174.0541 | 09-SEP-2003 | mdmk | 20 | 2 | 10 na | 1017.0 | 996.6 | -10.4 | 0 | 20 | 0 | 20 | c |
| 362 | 033.0135 | 23-FEB-1988 | nrpc | 20 | 2 | 10 na | 429.0 | 410.0 | -9.0 | 0 | 10 | 0 | 10 | c |
| 363 | 119.0421 | 09-JUL-1991 | nrpc | 20 | 2 | 21 na | 370.0 | 340.0 | -9.0 | 0 | 10 | 0 | 10 | c |
| 364 | 119.0440 | 04-NOV-1991 | nrpc | 20 | 2 | 14 na | 239.5 | 217.1 | -8.4 | 0 | 10 | 0 | 10 | c |
| 365 | 207.0103 | 26-APR-2004 | Iwmk | 20 | 2 | 42 na | 108.0 | 57.7 | -8.3 | 0 | 20 | 0 | 20 | c |
| 366 | 007.0465 | 30-NOV-1994 | nrpc | 20 | 2 | 20 na | 296.5 | 268.3 | -8.2 | 0 | 10 | 0 | 10 | c |
| 367 | 159.0821 | 25-JUL-2002 | nrpc | 20 | 2 | 16 na | 269.0 | 245.0 | -8.0 | 0 | 10 | 0 | 10 | c |
| 368 | 221.0135 | 08-JUN-2005 | upct | 40 | 2 | 12 na | 1193.8 | 1173.9 | -7.9 | 0 | 40 | 0 | 40 | c |
| 369 | 258.0630 | 10-MAY-2004 | winn | 20 | 2 | 13 na | 591.7 | 571.1 | -7.6 | 0 | 20 | 0 | 20 | c |
| 370 | 033.0252 | 24-JUN-1990 | nrpc | 20 | 2 | 19 na | 257.5 | 231.0 | -7.5 | 0 | 10 | 0 | 10 | c |
| 371 | 033.0643 | 12-APR-1995 | nrpc | 20 | 2 |  | 369.0 | 309.7 | -7.3 | 0 | 10 | 0 | 10 | c |
| 372 | 086.0167 | 10-APR-2001 | mdct | 40 | 2 | 13 na | 1099.8 | 1080.0 | -6.8 | 0 | 40 | 0 | 40 | c |
| 373 | 098.0222 | 24-OCT-2005 | cont | 40 | 2 | 36 na | 902.5 | 860.0 | -6.5 | 0 | 40 | 0 | 40 | c |
| 374 | 134.0431 | 06-JUL-2005 | mdct | 40 | 2 |  | 483.3 | 415.0 | -6.3 | 0 | 40 | 0 | 40 | c |
| 375 | 232.0694 | 26-NOV-2003 | Iwct | 40 | 2 | 25 na | 487.9 | 457.0 | -5.9 | 0 | 40 | 0 | 40 | c |
| 376 | 033.0680 | 20-JUL-1995 | nrpc | 20 | 2 | 35 na | 340.6 | 300.0 | -5.6 | 0 | 10 | 0 | 10 | c |
| 377 | 188.0656 | 29-MAY-1996 | nrpc | 20 | 2 | 15 na | 169.1 | 148.8 | -5.3 | 0 | 10 | 0 | 10 | c |
| 378 | 035.0433 | 03-JUN-2005 | pemi | 40 | 2 | 15 na | 607.1 | 586.9 | -5.2 | 0 | 40 | 0 | 40 | c |
| 379 | 187.0427 | 11-NOV-1998 | saco | 40 | 2 | 35 na | 540.0 | 500.0 | -5.0 | 0 | 40 | 0 | 40 | c |
| 380 | 204.0137 | 12-DEC-2005 | coch | 20 | 2 |  | 91.6 | 59.0 | -4.6 | 0 | 10 | 0 | 10 | c |
| 381 | 117.0187 | 09-JUL-2003 | Iwct | 40 | 2 | 15 na | 277.6 | 258.3 | -4.3 | 0 | 40 | 0 | 40 | c |
| 382 | 036.0642 | 17-JUN-2005 | mdct | 40 | 2 | 18 na | 835.7 | 814.1 | -3.6 | 0 | 20 | 0 | 20 | c |
| 383 | 033.0576 | 14-JUL-1994 | nrpc | 20 | 2 |  | 371.7 | 356.2 | -3.5 | 0 | 10 | 0 | 10 | c |
| 384 | 051.0813 | 19-SEP-2005 | upm | 20 | 2 | 25 na | 320.0 | 291.8 | -3.2 | 0 | 20 | 0 | 20 | c |
| 385 | 143.0725 | 14-APR-2003 | upm | 20 | 2 | 18 na | 362.0 | 341.0 | -3.0 | 0 | 20 | 0 | 20 | c |
| 386 | 089.0884 | 29-SEP-2004 | lamp | 20 | 2 | 23 na | 184.0 | 158.0 | -3.0 | 0 | 20 | 0 | 20 | c |
| 387 | 007.0356 | 09-APR-1992 | nrpc | 20 | 2 | 10 na | 265.0 | 252.0 | -3.0 | 0 | 10 | 0 | 10 | c |
| 388 | 187.0548 | 25-SEP-2003 | saco | 40 | 2 | 26 na | 563.5 | 535.0 | -2.5 | 0 | 40 | 0 | 40 | c |
| 389 | 119.1260 | 17-JUN-2004 | nrpc | 20 | 2 |  | 224.1 | 200.0 | -2.1 | 0 | 10 | 0 | 10 | c |
| 390 | 119.0479 | 15-OCT-1992 | nrpc | 20 | 2 | 25 na | 372.0 | 345.0 | -2.0 | 0 | 10 | 0 | 10 | c |
| 391 | 159.0234 | 22-MAY-1991 | nrpc | 20 | 2 | 14 na | 291.0 | 275.0 | -2.0 | 0 | 10 | 0 | 10 | c |
| 392 | 190.0219 | 31-OCT-2001 | cont | 40 | 2 | 20 na | 719.0 | 697.2 | -1.8 | 0 | 40 | 0 | 40 | c |
| 393 | 119.0443 | 20-DEC-1991 | nrpc | 20 | 2 |  | 211.7 | 200.0 | -1.7 | 0 | 10 | 0 | 10 | c |
| 394 | 159.0339 | 15-FEB-1995 | nrpc | 20 | 2 | 27 na | 410.0 | 381.5 | -1.5 | 0 | 10 | 0 | 10 | c |
| 395 | 007.0681 | 08-JAN-1998 | nrpc | 20 | 2 |  | 273.0 | 261.5 | -1.5 | 0 | 10 | 0 | 10 | c |
| 396 | 241.0816 | 04-SEP-2004 | coch | 20 | 2 |  | 513.3 | 501.0 | -1.3 | 0 | 20 | 0 | 20 | c |
| 397 | 033.0544 | 27-SEP-1993 | nrpc | 20 | 2 | 18 na | 441.0 | 422.0 | -1.0 | 0 | 10 | 0 | 10 | c |
| 398 | 204.0134 | 05-APR-2005 | coch | 20 | 2 | 19 na | 140.0 | 120.0 | -1.0 | 0 | 10 | 0 | 10 | c |
| 399 | 058.0192 | 15-JUN-2005 | pemi | 40 | 2 |  | 870.0 | 829.0 | -1.0 | 0 | 40 | 0 | 40 | c |
| 400 | 098.0238 | 16-JUN-2006 | mdmk | 20 | 2 |  | 876.9 | 859.3 | -0.6 | 0 | 20 | 0 | 20 | c |


|  | Characteristics for 1300 Verification Wells |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology $1=100 \%$ Till $2=$ Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | Date Completed | USGS | $\begin{aligned} & \binom{(\mathrm{ft}}{\mathrm{sTI}} \end{aligned}$ | AGeo | $\begin{array}{\|c} \begin{array}{c} \text { Depth } \\ \text { (ft bgs) to } \end{array} \\ \hline \text { Bedrock } \end{array} \text { Till }$ | Interp (ft Land Elev | $\begin{aligned} & \text { polated } \\ & \text { mst) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ |  |  |  |  | OCU |
| 401 | 119.1188 | 28-MAY-2003 | nrpc | 20 | 2 | 28 na | 267.4 | 239.0 | -0.4 | 0 | 10 | 0 | 10 | C |
| 402 | 215.0059 | 10-NOV-2005 | cont | 40 | 2 | 17 na | 1066.7 | 1049.4 | -0.3 | 0 | 40 | 0 | 40 | c |
| 403 | 119.1287 | 16-MAY-2005 | nrpc | 20 | 2 | 16 na | 313.0 | 297.0 | 0.0 | 0 | 10 | 0 | 10 | c |
| 404 | 136.0131 | 01-DEC-1999 | Iwct | 40 | 2 | 10 na | 1187.7 | 1177.8 | 0.1 | 0 | 40 | 0 | 40 | c |
| 405 | 256.1848 | 20-OCT-2004 | Iwmk | 20 | 2 | 15 na | 255.7 | 241.0 | 0.3 | 0 | 20 | 0 | 20 | c |
| 406 | 155.1018 | 16-DEC-2004 | winn | 20 | 2 | 12 na | 520.0 | 508.5 | 0.5 | 0 | 20 | 0 | 20 | c |
| 407 | 119.1318 | 09-JAN-2006 | nrpc | 20 | 2 | 18 na | 199.5 | 182.0 | 0.5 | 0 | 10 | 0 | 10 | c |
| 408 | 188.0455 | 03-SEP-1993 | nrpc | 20 | 2 | 14 na | 136.2 | 123.0 | 0.8 | 0 | 10 | 0 | 10 | c |
| 409 | 181.0055 | 30-APR-2001 | upct | 40 | 2 | 11 na | 881.5 | 871.3 | 0.8 | 0 | 40 | 0 | 40 | c |
| 410 | 142.1950 | 13-APR-2000 | Iwmk | 20 | 2 | 20 na | 240.0 | 221.0 | 1.0 | 0 | 20 | 0 | 20 | c |
| 411 | 159.0240 | 19-SEP-1991 | nrpc | 20 | 2 | 18 na | 290.0 | 273.0 | 1.0 | 0 | 10 | 0 | 10 | c |
| 412 | 188.0334 | 21-NOV-1990 | nrpc | 20 | 2 | 10 na | 149.0 | 140.0 | 1.0 | 0 | 10 | 0 | 10 | c |
| 413 | 095.0117 | 03-AUG-2004 | Iwct | 40 | 2 | 35 na | 1034.0 | 1000.0 | 1.0 | 0 | 40 | 0 | 40 | c |
| 414 | 139.0409 | 28-MAR-2005 | nrpc | 20 | 2 | 20 na | 210.0 | 191.0 | 1.0 | 0 | 10 | 0 | 10 | c |
| 415 | 221.0141 | 03-NOV-2005 | upct | 40 | 2 | 11 na | 1287.5 | 1277.5 | 1.0 | 0 | 40 | 0 | 40 | c |
| 416 | 188.0416 | 03-DEC-1992 | nrpc | 20 | 2 | 14 na | 144.0 | 131.3 | 1.3 | 0 | 10 | 0 | 10 | c |
| 417 | 119.1167 | 05-APR-2002 | nrpc | 20 | 2 | 18 na | 201.8 | 185.2 | 1.4 | 0 | 10 | 0 | 10 | c |
| 418 | 139.0146 | 10-JUN-1992 | nrpc | 20 | 2 | 30 na | 245.0 | 216.5 | 1.5 | 0 | 10 | 0 | 10 | c |
| 419 | 122.1163 | 25-MAR-2005 | nrpc | 20 | 2 | 13 na | 210.3 | 199.3 | 2.0 | 0 | 10 | 0 | 10 | c |
| 420 | 253.0198 | 13-NOV-2003 | cont | 40 | 2 | 35 na | 710.0 | 677.2 | 2.2 | 0 | 40 | 0 | 40 | c |
| 421 | 094.0077 | 01-JUN-2001 | upct | 40 | 2 | 25 na | 1032.7 | 1010.0 | 2.3 | 0 |  | 0 | 40 | c |
| 422 | 254.0330 | 06-APR-2004 | nrpc | 20 | 2 | 22 na | 645.7 | 626.0 | 2.3 | 0 | 10 | 0 | 10 | c |
| 423 | 191.0159 | 03-JUN-2005 | mdct | 40 | 2 | 47 na | 441.0 | 396.3 | 2.3 | 0 | 40 | 0 | 40 | c |
| 424 | 033.0127 | 05-JAN-1988 | nrpc | 20 | 2 |  | 348.1 | 328.6 | 2.5 | 0 | 10 | 0 | 10 | c |
| 425 | 252.0229 | 13-AUG-2004 | mdct | 40 | 2 | 25 na | 907.2 | 884.8 | 2.6 | 0 | 40 | 0 | 40 | c |
| 426 | 013.0530 | 13-JUL-1998 | mdmk | 20 | 2 | 13 na | 341.0 | 330.6 | 2.6 | 0 | 20 | 0 | 20 | c |
| 427 | 052.0421 | 21-AUG-1997 | saco | 40 | 2 | 28 na | 513.5 | 488.2 | 2.7 | 0 | 40 | 0 | 40 | c |
| 428 | 139.0071 | 13-JUL-1988 | nrpc | 20 | 2 | 35 na | 218.0 | 185.8 | 2.8 | 0 | 10 | 0 | 10 | c |
| 429 | 033.0810 | 24-FEB-1998 | nrpc | 20 | 2 | 20 na | 292.0 | 275.1 | 3.1 | 0 | 10 | 0 | 10 | c |
| 430 | 119.0709 | 11-SEP-1995 | nrpc | 20 | 2 |  | 230.0 | 201.2 | 3.2 | 0 | 10 | 0 | 10 | c |
| 431 | 033.0382 | 08-MAY-1991 | nrpc | 20 | 2 | 26 na | 285.4 | 262.8 | 3.4 | 0 | 10 | 0 | 10 | c |
| 432 | 188.0314 | 19-OCT-1990 | nrpc | 20 | 2 | 20 na | 167.3 | 150.8 | 3.5 | 0 | 10 | 0 | 10 | c |
| 433 | 057.0153 | 10-JUL-2003 | mdct | 40 | 2 |  | 969.8 | 952.3 | 3.5 | 0 | 40 | 0 | 40 | c |
| 434 | 027.1274 | 25-APR-2006 | upm | 20 | 2 | 12 na | 242.0 | 233.6 | 3.6 | 0 | 20 | 0 | 20 | c |
| 435 | 139.0075 | 07-DEC-1988 | nrpc | 20 | 2 | 30 na | 208.0 | 181.7 | 3.7 | 0 | 10 | 0 | 10 | c |
| 436 | 021.0784 | 18-APR-2006 | winn | 20 | 2 | 15 na | 780.0 | 768.8 | 3.8 | 0 | 20 | 0 | 20 | c |
| 437 | 139.0135 | 18-MAY-1992 | nrpc | 20 | 2 | 30 na | 208.0 | 182.0 | 4.0 | 0 | 10 | 0 | 10 | c |
| 438 | 167.0701 | 13-OCT-1997 | mdmk | 20 | 2 | 20 na | 553.0 | 537.0 | 4.0 | 0 | 20 | 0 | 20 | c |
| 439 | 113.0170 | 26-JUL-2002 | pemi | 40 | 2 |  | 621.0 | 600.0 | 4.0 | 0 | 40 | 0 | 40 | c |
| 440 | 256.1126 | 01-SEP-1996 | lwmk | 20 | 2 |  | 221.7 | 205.8 | 4.1 | 0 | 20 | 0 | 20 | c |
| 441 | 044.0770 | 26-JUN-2002 | lamp | 20 | 2 | 17 na | 372.5 | 360.0 | 4.5 | 0 | 20 | 0 | 20 | c |
| 442 | 119.1293 | 25-JUL-2005 | nrpc | 20 | 2 | 45 na | 211.6 | 171.1 | 4.5 | 0 | 10 | 0 | 10 | c |
| 443 | 119.0409 | 16-JAN-1991 | nrpc | 20 | 2 |  | 191.9 | 184.5 | 4.6 | 0 | 10 | 0 | 10 | c |
| 444 | 119.1280 | 14-FEB-2005 | nrpc | 20 | 2 | 21 na | 221.5 | 205.2 | 4.7 | 0 | 10 | 0 | 10 | c |
| 445 | 020.2511 | 15-JUL-2004 | mdmk | 20 | 2 | 17 na | 258.5 | 246.3 | 4.8 | 0 | 20 | 0 | 20 | c |
| 446 | 139.0145 | 17-SEP-1992 | nrpc | 20 | 2 |  | 222.0 | 180.0 | 5.0 | 0 | 10 | 0 | 10 | c |
| 447 | 152.0140 | 15-JUL-2003 | Iwct | 40 | 2 | 10 na | 1184.4 | 1179.5 | 5.1 | 0 | 40 | 0 | 40 | c |
| 448 | 047.0256 | 24-APR-2006 | Iwct | 40 | 2 |  | 529.1 | 518.2 | 5.1 | 0 | 40 | 0 | 40 | c |
| 449 | 112.0319 | 27-APR-2004 | mdct | 40 | 2 | 15 na | 1143.8 | 1134.0 | 5.2 | 0 | 20 | 0 | 20 | c |
| 450 | 225.0945 | 30-MAR-2004 | lamp | 20 | 2 |  | 134.8 | 123.0 | 5.2 | 0 | 20 | 0 | 20 | c |


|  | Characteristics for 1300 Verification Wells |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type O=Overclassed C= Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | Depth (ft bgs) |  | Interp (ft Land | polated <br> $\mathrm{msl})$ <br> Water | Satur <br> Calc | rated Act Cl | Thic tual ass | knes <br> Map <br> Cla | $\begin{aligned} & \mathrm{s}(\mathrm{ft}) \\ & \text { sped } \\ & \text { ass } \\ & \hline \end{aligned}$ |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 451 | 183.0942 | 17-AUG-2004 | lamp | 20 | 2 | 11 | na | 192.0 | 186.4 | 5.4 | 0 | 20 | 0 | 20 | C |
| 452 | 007.0402 | 26-JUL-1993 | nrpc | 20 | 2 | 10 | na | 253.0 | 248.6 | 5.6 | 0 | 10 | 0 | 10 | C |
| 453 | 145.0146 | 27-APR-2004 | mdct | 40 | 2 | 18 | na | 740.0 | 727.8 | 5.8 | 0 | 20 | 0 | 20 | C |
| 454 | 142.2181 | 21-APR-2003 | lwmk | 20 | 2 | 17 | na | 241.0 | 230.0 | 6.0 | 0 | 20 | 0 | 20 | C |
| 455 | 231.0315 | 19-MAY-2004 | cont | 40 | 2 | 10 | na | 722.0 | 718.0 | 6.0 | 0 | 40 | 0 | 40 | C |
| 456 | 013.0849 | 27-MAY-2004 | mdmk | 20 | 2 | 15 | na | 261.0 | 252.0 | 6.0 | 0 | 20 | 0 | 20 | C |
| 457 | 096.0194 | 25-APR-2005 | pemi | 40 | 2 | 10 | na | 878.0 | 874.0 | 6.0 | 0 | 40 | 0 | 40 | C |
| 458 | 159.0962 | 14-SEP-2005 | nrpc | 20 | 2 | 18 | na | 307.0 | 295.0 | 6.0 | 0 | 10 | 0 | 10 | C |
| 459 | 259.0096 | 27-JUL-2004 | pemi | 40 | 2 | 20 | na | 768.8 | 754.9 | 6.1 | 0 | 40 | 0 | 40 | C |
| 460 | 004.0142 | 22-JAN-1999 | upmk | 20 | 2 | 17 | na | 480.0 | 469.4 | 6.4 | 0 | 20 | 0 | 20 | C |
| 461 | 044.0551 | 27-APR-1998 | lamp | 20 | 2 | 23 | na | 196.0 | 179.5 | 6.5 | 0 | 20 | 0 | 20 | C |
| 462 | 112.0353 | 07-MAY-2005 | mdct | 40 | 2 | 16 | na | 612.2 | 603.1 | 6.9 | 0 | 40 | 0 | 40 | C |
| 463 | 134.0357 | 27-AUG-2002 | mdct | 40 | 2 | 19 | na | 868.0 | 856.0 | 7.0 | 0 | 40 | 0 | 40 | C |
| 464 | 091.0679 | 03-APR-2003 | upmk | 20 | 2 | 23 | na | 679.0 | 663.0 | 7.0 | 0 | 20 | 0 | 20 | C |
| 465 | 200.1116 | 14-NOV-2003 | lamp | 20 | 2 | 18 | na | 210.0 | 199.0 | 7.0 | 0 | 20 | 0 | 20 | C |
| 466 | 032.0111 | 25-OCT-2004 | coch | 20 | 2 | 24 | na | 562.0 | 545.0 | 7.0 | 0 | 20 | 0 | 20 | C |
| 467 | 119.0335 | 31-OCT-1988 | nrpc | 20 | 2 | 27 | na | 238.0 | 218.4 | 7.4 | 0 | 10 | 0 | 10 | C |
| 468 | 036.0568 | 13-OCT-2003 | mdct | 40 | 2 | 18 | na | 952.6 | 942.2 | 7.6 | 0 | 20 | 0 | 20 | C |
| 469 | 033.1141 | 05-NOV-2005 | nrpc | 20 | 2 | 12 | na | 285.4 | 281.0 | 7.6 | 0 | 10 | 0 | 10 | C |
| 470 | 161.0259 | 02-SEP-1997 | coch | 20 | 2 | 20 | na | 451.3 | 439.0 | 7.7 | 0 | 20 | 0 | 20 | C |
| 471 | 007.0447 | 02-MAY-1994 | nrpc | 20 | 2 | 30 | na | 271.1 | 249.0 | 7.9 | 0 | 10 | 0 | 10 | C |
| 472 | 179.0415 | 13-APR-2004 | upmk | 20 | 2 | 25 | na | 420.0 | 403.0 | 8.0 | 0 | 20 | 0 | 20 | C |
| 473 | 156.0295 | 07-JUN-1989 | nrpc | 20 | 2 | 10 | na | 214.0 | 212.1 | 8.1 | 0 | 10 | 0 | 10 | C |
| 474 | 165.0087 | 02-SEP-1994 | nrpc | 20 | 2 | 35 | na | 236.9 | 210.0 | 8.1 | 0 | 10 | 0 | 10 | C |
| 475 | 021.0687 | 14-APR-2004 | winn | 20 | 2 | 20 | na | 811.9 | 800.0 | 8.1 | 0 | 20 | 0 | 20 | C |
| 476 | 186.0213 | 15-AUG-2005 | mdct | 40 | 2 | 27 | na | 710.2 | 691.3 | 8.1 | 0 | 20 | 0 | 20 | C |
| 477 | 140.0281 | 13-SEP-2001 | mdct | 40 | 2 | 18 | na | 895.0 | 885.2 | 8.2 | 0 | 40 | 0 | 40 | C |
| 478 | 125.0192 | 16-OCT-2003 | upct | 40 | 2 | 19 | na | 1141.7 | 1130.9 | 8.2 | 0 | 40 | 0 | 40 | C |
| 479 | 253.0259 | 07-JAN-2005 | cont | 40 | 2 | 10 | na | 670.0 | 668.3 | 8.3 | 0 | 40 | 0 | 40 | C |
| 480 | 139.0122 | 05-SEP-1991 | nrpc | 20 | 2 | 25 | na | 222.0 | 205.5 | 8.5 | 0 | 10 | 0 | 10 | C |
| 481 | 206.0240 | 01-NOV-2005 | pemi | 40 | 2 | 20 | na | 611.5 | 600.0 | 8.5 | 0 | 40 | 0 | 40 | C |
| 482 | 044.0813 | 16-MAY-2003 | lamp | 20 | 2 | 10 | na | 209.0 | 207.7 | 8.7 | 0 | 20 | 0 | 20 | C |
| 483 | 165.0038 | 30-AUG-1989 | nrpc | 20 | 2 | 24 | na | 199.5 | 184.3 | 8.8 | 0 | 10 | 0 | 10 | C |
| 484 | 021.0606 | 14-OCT-1998 | winn | 20 | 2 | 17 | na | 602.8 | 594.6 | 8.8 | 0 | 20 | 0 | 20 | C |
| 485 | 031.0202 | 06-JUN-2003 | pemi | 40 | 2 | 15 | na | 577.0 | 570.8 | 8.8 | 0 | 40 | 0 | 40 | C |
| 486 | 098.0235 | 28-MAR-2006 | mdmk | 20 | 2 | 20 | na | 880.0 | 868.8 | 8.8 | 0 | 20 | 0 | 20 | C |
| 487 | 164.1571 | 22-SEP-2005 | winn | 20 | 2 | 10 | na | 505.1 | 504.0 | 8.9 | 0 | 20 | 0 | 20 | C |
| 488 | 007.0347 | 03-APR-1992 | nrpc | 20 | 2 | 10 | na | 280.0 | 279.0 | 9.0 | 0 | 10 | 0 | 10 | C |
| 489 | 083.0284 | 20-MAY-2002 | coch | 20 | 2 | 12 | na | 260.0 | 257.0 | 9.0 | 0 | 20 | 0 | 20 | C |
| 490 | 008.0273 | 03-JUN-2004 | pemi | 40 | 2 | 15 | na | 660.0 | 654.0 | 9.0 | 0 | 40 | 0 | 40 | C |
| 491 | 254.0108 | 27-FEB-1991 | nrpc | 20 | 2 | 17 | na | 618.0 | 610.1 | 9.1 | 0 | 10 | 0 | 10 | C |
| 492 | 033.0966 | 23-APR-1999 | nrpc | 20 | 2 | 12 | na | 263.5 | 260.7 | 9.2 | 0 | 10 | 0 | 10 | C |
| 493 | 258.0659 | 09-AUG-2004 | winn | 20 | 2 | 10 | na | 535.2 | 534.4 | 9.2 | 0 | 20 | 0 | 20 | C |
| 494 | 033.0654 | 26-JUL-1995 | nrpc | 20 | 2 | 18 |  | 308.7 | 300.0 | 9.3 | 0 | 10 | 0 | 10 | C |
| 495 | 188.1363 | 05-JUN-2003 | nrpc | 20 | 2 | 20 | na | 131.6 | 121.0 | 9.4 | 0 | 10 | 0 | 10 | C |
| 496 | 183.0562 | 27-JUL-1998 | lamp | 20 | 2 | 26 |  | 458.5 | 442.0 | 9.5 | 0 | 20 | 0 | 20 | C |
| 497 | 119.1180 | 05-MAY-2003 | nrpc | 20 | 2 | 21 |  | 204.4 | 193.0 | 9.6 | 0 | 10 | 0 | 10 | C |
| 498 | 233.0505 | 18-MAY-2005 | saco | 40 | 2 | 39 |  | 472.3 | 443.0 | 9.7 | 0 | 40 | 0 | 40 | C |
| 499 | 164.1466 | 06-JUL-2004 | winn | 20 | 2 | 14 |  | 530.0 | 525.8 | 9.8 | 0 | 20 | 0 | 20 | C |
| 500 | 167.1046 | 03-NOV-2004 | mdmk | 20 | 2 | 20 | na | 541.0 | 530.8 | 9.8 | 0 | 20 | 0 | 20 | C |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | $\begin{gathered} \text { Date } \\ \text { Completed } \end{gathered}$ | USGS Study | $\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline(\mathrm{tr}) \\ \mathrm{STI} \end{array}\right)$ | AGeo | $\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Depth } \\ \text { (ft bgs) to } \end{array} \\ \hline \text { Bedrock } & \text { Till } \\ \hline \end{array}$ | $\begin{array}{r} \begin{array}{r} \text { Interp } \\ \text { (ft m } \\ \text { Land } \\ \text { Elev } \end{array} \\ \hline \end{array}$ | $\begin{aligned} & \text { polated } \\ & \text { mst) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ |  |  |  |  | OCU |
| 01 | 039.0100 | 07-JUL-2005 | mdct | 40 |  | 14 na | 1268.4 | 1264.3 | 9.9 | 0 | 40 | 0 | 40 | C |
| 502 | 033.0188 | 10-OCT-1988 | nrpc | 20 | 2 | 23 na | 423.0 | 410.0 | 10.0 | 10 | 20 | 10 | 20 | c |
| 503 | 241.0818 | 06-OCT-2004 | saco | 40 | 2 | 30 na | 578.0 | 558.0 | 10.0 | 0 | 40 | 0 | 40 | c |
| 504 | 231.0357 | 17-JUN-2005 | cont | 40 | 2 | 20 na | 727.0 | 717.0 | 10.0 | 0 | 40 | 0 | 40 | c |
| 505 | 077.0732 | 14-JUL-2006 | mdct | 40 | 2 | 29 na | 1213.9 | 1195.0 | 10.1 | 0 | 40 | 0 | 40 | c |
| 506 | 139.0123 | 08-AUG-1991 | nrpc | 20 | 2 | 40 na | 191.0 | 161.5 | 10.5 | 10 | 20 | 10 | 20 | c |
| 507 | 253.0189 | 14-SEP-2000 | cont | 40 | 2 | 35 na | 683.0 | 658.6 | 10.6 | 0 | 40 | 0 | 40 | c |
| 508 | 170.0471 | 26-SEP-2003 | winn | 20 | 2 | 40 na | 870.4 | 841.0 | 10.6 | 0 | 20 | 0 | 20 | c |
| 509 | 025.0235 | 23-APR-2001 | mdct | 40 | 2 | 38 na | 1102.4 | 1075.1 | 10.7 | 0 | 40 | 0 | 40 | c |
| 510 | 094.0101 | 01-JUN-2006 | upct | 40 | 2 | 16 na | 920.0 | 914.9 | 10.9 | 0 | 40 | 0 | 40 | c |
| 511 | 020.1261 | 14-SEP-1993 | Immk | 20 | 2 | 14 na | 223.0 | 220.0 | 11.0 | 0 | 20 | 0 | 20 | c |
| 512 | 028.0195 | 11-AUG-2003 | cont | 40 | 2 | 25 na | 654.0 | 640.0 | 11.0 | 0 | 40 | 0 | 40 | c |
| 513 | 014.0484 | 23-DEC-2003 | upmk | 20 | 2 | 20 na | 547.0 | 538.0 | 11.0 | 0 | 20 | 0 | 20 | c |
| 514 | 007.0264 | 02-AUG-1989 | nrpc | 20 | 2 | 21 na | 211.0 | 201.0 | 11.0 | 10 | 20 | 10 | 20 | c |
| 515 | 013.0749 | 21-MAR-2001 | mdmk | 20 | 2 | 16 na | 326.0 | 321.1 | 11.1 | 0 | 20 | 0 | 20 | c |
| 516 | 177.0287 | 27-MAY-2005 | Iwct | 40 | 2 | 16 na | 865.0 | 860.3 | 11.3 | 0 | 40 | 0 | 40 | c |
| 517 | 241.0851 | 22-APR-2005 | saco | 40 | 2 | 36 na | 600.0 | 575.4 | 11.4 | 0 | 40 | 0 | 40 | c |
| 518 | 208.0823 | 25-SEP-1998 | Iwmk | 20 | 2 | 12 na | 167.3 | 167.0 | 11.7 | 0 | 20 | 0 | 20 | c |
| 519 | 005.0345 | 04-APR-2006 | Iwct | 40 | 2 | 43 na | 523.3 | 492.0 | 11.7 | 0 | 40 | 0 | 40 | c |
| 520 | 099.0453 | 27-JAN-2004 | Immk | 20 | 2 | 24 na | 90.9 | 78.7 | 11.8 | 0 | 20 | 0 | 20 | c |
| 521 | 143.0872 | 24-MAR-2006 | upmk | 20 | 2 |  | 405.0 | 366.8 | 11.8 | 0 | 20 | 0 | 20 | c |
| 522 | 063.1671 | 26-AUG-2002 | Immk | 20 | 2 | 17 na | 297.0 | 291.9 | 11.9 | 0 | 20 | 0 | 20 | c |
| 523 | 210.0491 | 23-APR-2002 | pemi | 40 | 2 | 20 na | 633.0 | 625.0 | 12.0 | 0 | 40 | 0 | 40 | c |
| 524 | 022.0127 | 30-MAR-2006 | cont | 40 | 2 | 50 na | 678.0 | 640.0 | 12.0 | 0 | 40 | 0 | 40 | c |
| 525 | 187.0461 | 07-MAY-1999 | saco | 40 | 2 | 40 na | 625.8 | 598.2 | 12.4 | 0 | 40 | 0 | 40 | c |
| 526 | 219.0148 | 14-JUN-2000 | Iwct | 40 | 2 | 23 na | 1141.7 | 1131.9 | 12.7 | 0 | 40 | 0 | 40 | c |
| 527 | 028.0249 | 14-OCT-2005 | cont | 40 | 2 | 20 na | 819.2 | 812.0 | 12.8 | 0 | 40 | 0 | 40 | c |
| 528 | 159.0297 | 10-SEP-1993 | nrpc | 20 | 2 | 26 na | 272.0 | 259.0 | 13.0 | 10 | 20 | 10 | 20 | c |
| 529 | 061.0767 | 21-NOV-2001 | lamp | 20 | 2 | 25 na | 438.0 | 426.0 | 13.0 | 0 | 20 | 0 | 20 | c |
| 530 | 210.0500 | 27-NOV-2002 | pemi | 40 | 2 |  | 648.0 | 635.0 | 13.0 | 0 | 40 | 0 | 40 | c |
| 531 | 146.0282 | 10-JUN-2004 | mdct | 40 | 2 | 27 na | 411.2 | 397.2 | 13.0 | 0 | 40 | 0 | 40 | c |
| 532 | 129.0977 | 05-MAY-2006 | Immk | 20 | 2 | 20 na | 128.0 | 121.0 | 13.0 | 0 | 20 | 0 | 20 | c |
| 533 | 230.0074 | 19-MAR-2001 | lwct | 40 | 2 | 18 na | 617.9 | 613.0 | 13.1 | 0 | 40 | 0 | 40 | c |
| 534 | 008.0264 | 13-MAY-2003 | pemi | 40 | 2 | 15 na | 658.0 | 656.2 | 13.2 | 0 | 40 | 0 | 40 | c |
| 535 | 152.0133 | 14-MAR-2003 | Iwct | 40 | 2 | 15 na | 1161.4 | 1159.8 | 13.4 | 0 | 40 | 0 | 40 | c |
| 536 | 151.0184 | 04-AUG-2003 | Iwct | 40 | 2 | 16 na | 962.0 | 959.4 | 13.4 | 0 | 40 | 0 | 40 | c |
| 537 | 112.0330 | 03-AUG-2004 | mdct | 40 | 2 | 22 na | 1208.5 | 1200.0 | 13.5 | 0 | 20 | 0 | 20 | c |
| 538 | 119.0699 | 18-NOV-1995 | nrpc | 20 | 2 | 25 na | 201.8 | 190.5 | 13.7 | 10 | 20 | 10 | 20 | c |
| 539 | 224.0093 | 25-NOV-2003 | upct | 40 | 2 | 56 na | 927.3 | 885.0 | 13.7 | 0 | 40 | 0 | 40 | c |
| 540 | 140.0367 | 05-MAY-2005 | mdct | 40 | 2 | 16 na | 848.3 | 846.0 | 13.7 | 0 | 40 | 0 | 40 | c |
| 541 | 187.0763 | 09-MAY-2006 | saco | 40 | 2 | 18 na | 619.0 | 614.7 | 13.7 | 0 | 40 | 0 | 40 | c |
| 542 | 039.0102 | 05-OCT-2005 | mdct | 40 | 2 | 24 na | 1391.7 | 1381.5 | 13.8 | 0 | 40 | 0 | 40 | c |
| 543 | 242.0267 | 01-NOV-2002 | Iwct | 40 | 2 |  | 324.1 | 311.1 | 14.0 | 0 | 40 | 0 | 40 | c |
| 544 | 028.0193 | 29-AUG-2002 | cont | 40 | 2 | 23 na | 669.0 | 660.0 | 14.0 | 0 | 40 | 0 | 40 | c |
| 545 | 089.0842 | 27-MAY-2004 | lamp | 20 | 2 | 15 na | 148.0 | 147.0 | 14.0 | 0 | 20 | 0 | 20 | c |
| 546 | 020.1729 | 12-SEP-1996 | mdmk | 20 | 2 | 15 na | 256.0 | 255.0 | 14.0 | 0 | 20 | 0 | 20 | c |
| 547 | 061.0902 | 18-OCT-2005 | lamp | 20 | 2 | 33 na | 280.0 | 261.1 | 14.1 | 0 | 20 | 0 | 20 | c |
| 548 | 172.0356 | 21-APR-2004 | winn | 20 | 2 | 24 na | 549.8 | 540.0 | 14.2 | 0 | 20 |  | 20 | c |
| 549 | 033.0430 | 07-OCT-1991 | nrpc | 20 | 2 |  | 291.0 | 277.4 | 14.4 | 10 | 20 | 10 | 20 | c |
| 550 | 033.0653 | 30-JUN-1995 | nrpc | 20 | 2 |  | 241.5 | 236.0 | 14.5 | 10 | 20 | 10 | 20 | c |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Well | WRB | Date Completed | USGS | $\begin{aligned} & \binom{(\mathrm{ft}}{\mathrm{sTI}} \end{aligned}$ | AGeo | $\begin{gathered} \text { Depth } \\ (\mathrm{ft} \mathrm{bgs)} \mathrm{t} \\ \hline \text { Bedrock } \mid \end{gathered}$ |  | Interp (ft Land Elev | $\begin{aligned} & \text { polated } \\ & \text { mst) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ | $\begin{aligned} & \text { arated } \\ & \begin{array}{c} \text { Actu } \\ \text { Clas } \\ \text { Min } \end{array} \end{aligned}$ |  |  |  | OCU |
| 51 | 256.165 | 27-JUL-2001 | Iwmk | 20 | 2 | 18 | na | 163.5 | 160.0 | 14.5 | 0 | 20 | 0 | 20 | C |
| 552 | 138.0197 | 30-SEP-2005 | mdct | 40 | 2 | 46 | na | 781.3 | 750.0 | 14.7 | 0 | 20 | 0 | 20 | c |
| 553 | 077.0686 | 01-NOV-2004 | mdct | 40 | 2 | 27 | na | 1207.2 | 1195.0 | 14.8 | 0 | 40 | 0 | 40 | c |
| 554 | 112.0297 | 22-JUL-2002 | mdct | 40 | 2 | 40 | na | 683.0 | 658.0 | 15.0 | 0 | 20 | 0 | 20 | c |
| 555 | 188.0273 | 07-NOV-1988 | nrpc | 20 | 2 | 25 | na | 138.8 | 128.9 | 15.1 | 10 | 20 | 10 | 20 | c |
| 556 | 021.0723 | 10-NOV-2004 | winn | 20 | 2 | 27 | na | 808.2 | 796.6 | 15.4 | 0 | 20 | 0 | 20 | c |
| 557 | 152.0137 | 11-SEP-2002 | Iwct | 40 | 2 | 25 | na | 1171.5 | 1162.0 | 15.5 | 0 | 40 | 0 | 40 | c |
| 558 | 033.1112 | 22-JUN-2005 | nrpc | 20 | 2 | 25 | na | 236.2 | 226.9 | 15.7 | 10 | 20 | 10 | 20 | c |
| 559 | 020.2419 | 24-JUN-2003 | mdmk | 20 | 2 | 28 | na | 177.0 | 164.8 | 15.8 | 0 | 20 | 0 | 20 | c |
| 560 | 079.0345 | 26-MAY-1999 | upmk | 20 | 2 | 20 | na | 302.0 | 298.0 | 16.0 | 0 | 20 | 0 | 20 | c |
| 561 | 230.0097 | 23-SEP-2004 | Iwct | 40 | 2 | 65 | na | 561.0 | 512.0 | 16.0 | 0 | 40 | 0 | 40 | c |
| 562 | 248.0329 | 25-APR-2006 | cont | 40 | 2 | 25 | na | 389.0 | 380.0 | 16.0 | 0 | 40 | 0 | 40 | c |
| 563 | 149.0389 | 19-AUG-1999 | saco | 40 | 2 |  | na | 460.0 | 446.2 | 16.2 | 0 | 40 | 0 | 40 | c |
| 564 | 028.0258 | 16-MAR-2006 | cont | 40 | 2 | 28 | na | 657.8 | 646.1 | 16.3 | 0 | 40 | 0 | 40 | c |
| 565 | 243.0418 | 26-AUG-2005 | cont | 40 | 2 | 46 | na | 422.0 | 392.4 | 16.4 | 0 | 40 | 0 | 40 | c |
| 566 | 008.0316 | 13-DEC-2005 | pemi | 40 | 2 |  | na | 652.5 | 648.0 | 16.5 | 0 | 40 | 0 | 40 | c |
| 567 | 256.1615 | 03-APR-2001 | Iwmk | 20 | 2 | 22 | na | 225.4 | 220.0 | 16.6 | 0 | 20 | 0 | 20 | c |
| 568 | 008.0303 | 09-JUN-2005 | cont | 40 | 2 | 18 | na | 655.0 | 653.6 | 16.6 | 0 | 40 | 0 | 40 | c |
| 569 | 202.0038 | 06-FEB-1986 | cont | 40 | 2 | 29 | na | 1059.0 | 1047.0 | 17.0 | 0 | 40 | 0 | 40 | c |
| 570 | 167.0969 | 01-AUG-2003 | mdmk | 20 | 2 | 18 | na | 520.0 | 519.0 | 17.0 | 0 | 20 | 0 | 20 | c |
| 571 | 210.0633 | 11-JAN-2006 | pemi | 40 | 2 |  | na | 630.0 | 625.0 | 17.0 | 0 | 40 | 0 | 40 | c |
| 572 | 102.0087 | 26-OCT-2003 | pemi | 40 | 2 |  | na | 680.0 | 672.2 | 17.2 | 0 | 40 | 0 | 40 | c |
| 573 | 204.0124 | 07-FEB-2003 | coch | 20 | 2 | 31 | na | 135.7 | 122.0 | 17.3 | 10 | 20 | 10 | 20 | c |
| 574 | 033.0534 | 23-JUL-1993 | nrpc | 20 | 2 |  | na | 236.6 | 236.0 | 17.4 | 10 | 20 | 10 | 20 | c |
| 575 | 029.0709 | 16-OCT-2003 | lamp | 20 | 2 |  | na | 141.5 | 128.0 | 17.5 | 0 | 20 | 0 | 20 | c |
| 576 | 256.1844 | 03-DEC-2004 | Immk | 20 | 2 | 20 | na | 174.0 | 171.5 | 17.5 | 0 | 20 | 0 | 20 | c |
| 577 | 095.0120 | 20-SEP-2005 | Iwct | 40 | 2 |  | na | 976.9 | 973.4 | 17.5 | 0 | 40 | 0 | 40 | c |
| 578 | 043.0046 | 14-AUG-2000 | saco | 40 | 2 |  | na | 508.5 | 491.2 | 17.7 | 0 | 40 | 0 | 40 | c |
| 579 | 139.0180 | 26-SEP-1994 | nrpc | 20 | 2 | 38 | na | 175.4 | 155.1 | 17.7 | 10 | 20 | 10 | 20 | c |
| 580 | 013.0759 | 10-SEP-2001 | mdmk | 20 | 2 |  | na | 319.0 | 316.8 | 17.8 | 0 | 20 | 0 | 20 | c |
| 581 | 129.0919 | 27-JUL-2005 | Iwmk | 20 | 2 |  | na | 139.0 | 138.0 | 18.0 | 0 | 20 | 0 | 20 | c |
| 582 | 007.0233 | 24-OCT-1988 | nrpc | 20 | 2 | 22 | na | 245.5 | 241.5 | 18.0 | 10 | 20 | 10 | 20 | c |
| 583 | 025.0276 | 21-NOV-2003 | mdct | 40 | 2 | 24 | na | 1352.8 | 1347.1 | 18.3 | 0 | 20 | 0 | 20 | c |
| 584 | 232.0742 | 02-AUG-2004 | Iwct | 40 | 2 |  | na | 458.7 | 458.0 | 18.3 | 0 | 40 | 0 | 40 | c |
| 585 | 119.0619 | 28-DEC-1994 | nrpc | 20 | 2 | 35 | na | 366.5 | 350.0 | 18.5 | 10 | 20 | 10 | 20 | c |
| 586 | 044.0835 | 31-MAY-2005 | lamp | 20 | 2 | 26 | na | 207.7 | 200.3 | 18.6 | 0 | 20 | 0 | 20 | c |
| 587 | 164.1570 | 06-JUL-2005 | winn | 20 | 2 |  | na | 575.7 | 564.4 | 18.7 | 0 | 20 | 0 | 20 | c |
| 588 | 210.0635 | 29-MAR-2006 | pemi | 40 | 2 | 40 | na | 651.7 | 630.5 | 18.8 | 0 | 40 | 0 | 40 | c |
| 589 | 170.0424 | 07-NOV-2001 | winn | 20 | 2 | 25 | na | 592.0 | 586.0 | 19.0 | 0 | 20 | 0 | 20 | c |
| 590 | 168.0503 | 09-JUL-2004 | cont | 40 | 2 |  | na | 856.0 | 848.1 | 19.1 | 0 | 40 | 0 | 40 | c |
| 591 | 020.1684 | 22-APR-1996 | mdmk | 20 | 2 | 38 | na | 232.0 | 213.2 | 19.2 | 0 | 20 | 0 | 20 | c |
| 592 | 247.1155 | 11-AUG-1999 | mdmk | 20 | 2 | 20 | na | 512.0 | 511.3 | 19.3 | 0 | 20 | 0 | 20 | c |
| 593 | 187.0769 | 07-AUG-2006 | saco | 40 | 2 | 22 | na | 421.7 | 419.2 | 19.5 | 0 | 40 | 0 | 40 | c |
| 594 | 041.0239 | 02-NOV-2001 | Iwct | 40 | 2 | 38 | na | 458.3 | 440.0 | 19.7 | 0 | 40 | 0 | 40 | c |
| 595 | 089.0531 | 29-APR-1998 | lamp | 20 | 2 |  | na | 179.0 | 177.7 | 19.7 | 0 | 20 | 0 | 20 | c |
| 596 | 007.1047 | 12-MAY-2003 | nrpc | 20 | 2 | 23 | na | 261.5 | 258.2 | 19.7 | 10 | 20 | 10 | 20 | c |
| 597 | 009.0178 | 12-MAR-2002 | cont | 40 | 2 | 40 | na | 610.0 | 590.0 | 20.0 | 0 | 40 | 0 | 40 | c |
| 598 | 199.0120 | 15-OCT-2004 | upct | 40 | 2 | 47 |  | 1488.0 | 1461.0 | 20.0 | 0 | 40 | 0 | 40 | c |
| 599 | 092.0110 | 18-MAR-2005 | lwct | 40 | 2 | 27 |  | 785.8 | 779.2 | 20.4 | 0 | 40 | 0 | 40 | c |
| 600 | 244.0079 | 18-FEB-2002 | pemi | 40 | 2 |  |  | 850.9 | 836.6 | 20.7 | 0 | 40 | 0 | 40 | c |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | Date Completed | USGS Study | $\begin{aligned} & \binom{(\mathrm{ft}}{\mathrm{sti}} . . . ~ \end{aligned}$ | AGeo | $\begin{gathered} \begin{array}{c} \text { Depth } \\ \text { (ft bgs) } \end{array} \\ \hline \text { Bedrock } 17 \end{gathered}$ |  | $\begin{aligned} & \begin{array}{l} \text { Interp } \\ \text { (ft m } \\ \text { Land } \\ \text { Elev } \end{array} \end{aligned}$ | $\begin{aligned} & \text { polated } \\ & \text { msl) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satul } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ | $\begin{aligned} & \text { urated } \\ & \begin{array}{c} \text { Actu } \\ \text { Clas } \\ \hline \text { Min } \end{array} \end{aligned}$ |  | $\begin{aligned} & \text { knes } \\ & \begin{array}{c} \text { Map } \\ \text { Cla } \end{array} \\ & \hline \end{aligned}$ Min |  | OCU |
| 601 | 172.0219 | 01-DEC-1998 | pemi | 40 |  | 40 | na | 595.7 | 576.6 | 20.9 | 0 | 40 | 0 | 40 | C |
| 602 | 172.0384 | 05-JAN-2005 | pemi | 40 | 2 | 50 | na | 609.1 | 580.0 | 20.9 | 0 | 40 | 0 | 40 | c |
| 603 | 006.1527 | 17-JAN-2006 | winn | 20 | 2 | 40 | na | 528.1 | 509.0 | 20.9 | 20 | 40 | 20 | 40 | c |
| 604 | 253.0186 | 25-MAR-2002 | cont | 40 | 2 | 25 | na | 675.0 | 671.0 | 21.0 | 0 | 40 | 0 | 40 | c |
| 605 | 243.0422 | 22-NOV-2005 | cont | 40 | 2 | 22 | na | 631.0 | 630.0 | 21.0 | 0 | 40 | 0 | 40 | c |
| 606 | 210.0506 | 01-OCT-2003 | pemi | 40 | 2 | 65 | na | 446.8 | 404.2 | 22.4 | 0 | 40 | 0 | 40 | c |
| 607 | 152.0105 | 14-OCT-1998 | lwct | 40 | 2 | 28 | na | 1165.5 | 1160.0 | 22.5 | 0 | 40 | 0 | 40 | c |
| 608 | 190.0194 | 13-SEP-2002 | cont | 40 | 2 | 63 | na | 835.8 | 795.4 | 22.6 | 0 | 40 | 0 | 40 | c |
| 609 | 245.0307 | 11-AUG-2004 | Iwct | 40 | 2 | 25 | na | 1452.9 | 1450.5 | 22.6 | 0 | 40 | 0 | 40 | c |
| 610 | 003.0269 | 20-OCT-2004 | pemi | 40 | 2 | 30 | na | 931.8 | 924.4 | 22.6 | 0 | 40 | 0 | 40 | c |
| 611 | 067.0383 | 17-MAR-2005 | coch | 20 | 2 | 36 | na | 73.2 | 60.0 | 22.8 | 20 | 40 | 20 | 40 | c |
| 612 | 112.0322 | 11-JUN-2004 | mdct | 40 | 2 | 37 | na | 700.0 | 685.9 | 22.9 | 0 | 40 | 0 | 40 | c |
| 613 | 167.0915 | 09-JAN-2002 | mdmk | 20 | 2 | 35 | na | 315.0 | 303.0 | 23.0 | 20 | 40 | 20 | 40 | c |
| 614 | 162.0123 | 28-OCT-2005 | mdct | 40 | 2 | 45 | na | 480.0 | 458.1 | 23.1 | 0 | 40 | 0 | 40 | c |
| 615 | 188.1375 | 01-JUL-2003 | nrpc | 20 | 2 | 28 | na | 140.4 | 136.2 | 23.8 | 20 | 40 | 20 | 40 | c |
| 616 | 210.0547 | 19-DEC-2003 | pemi | 40 | 2 | 27 | na | 461.0 | 457.9 | 23.9 | 0 | 40 | 0 | 40 | c |
| 617 | 008.0323 | 11-MAY-2006 | pemi | 40 | 2 | 46 | na | 740.0 | 718.0 | 24.0 | 0 | 40 | 0 | 40 | c |
| 618 | 117.0136 | 17-AUG-1999 | Iwct | 40 | 2 | 36 | na | 452.8 | 441.2 | 24.4 | 0 | 40 | 0 | 40 | c |
| 619 | 188.1503 | 24-OCT-2003 | nrpc | 20 | 2 | 42 | na | 147.6 | 130.0 | 24.4 | 20 | 40 | 20 | 40 | c |
| 620 | 202.0546 | 15-SEP-2001 | Iwct | 40 | 2 | 30 | na | 1050.4 | 1044.9 | 24.5 | 0 | 40 | 0 | 40 | c |
| 621 | 125.0200 | 21-JUN-2004 | upct | 40 | 2 | 26 | na | 1149.0 | 1147.8 | 24.8 | 0 | 40 | 0 | 40 | c |
| 622 | 015.1155 | 24-SEP-2004 | coch | 20 | 2 | 29 | na | 152.1 | 147.9 | 24.8 | 20 | 40 | 20 | 40 | c |
| 623 | 146.0245 | 05-DEC-2001 | mdct | 40 | 2 | 45 | na | 418.0 | 398.0 | 25.0 | 0 | 40 | 0 | 40 | c |
| 624 | 010.0129 | 05-MAY-2003 | pemi | 40 | 2 | 50 | na | 567.8 | 542.8 | 25.0 | 0 | 40 | 0 | 40 | c |
| 625 | 258.0644 | 09-JUL-2004 | winn | 20 | 2 | 28 | na | 537.0 | 534.0 | 25.0 | 20 | 40 | 20 | 40 | c |
| 626 | 073.0070 | 15-DEC-2005 | mdct | 40 | 2 | 55 | na | 1150.0 | 1120.0 | 25.0 | 0 | 40 | 0 | 40 | c |
| 627 | 241.0638 | 13-JUL-2001 | saco | 40 | 2 | 30 | na | 498.3 | 493.8 | 25.5 | 0 | 40 | 0 | 40 | c |
| 628 | 177.0216 | 08-DEC-2001 | Iwct | 40 | 2 | 28 | na | 692.3 | 690.0 | 25.7 | 0 | 40 | 0 | 40 | c |
| 629 | 196.0743 | 12-MAR-2004 | Iwm | 20 | 2 | 32 | na | 123.0 | 116.7 | 25.7 | 20 | 40 | 20 | 40 | c |
| 630 | 005.0323 | 07-FEB-2005 | Iwct | 40 | 2 | 29 | na | 1302.5 | 1299.2 | 25.7 | 0 | 40 | 0 | 40 | c |
| 631 | 028.0189 | 08-NOV-2001 | cont | 40 | 2 | 42 | na | 840.2 | 824.6 | 26.4 | 0 | 40 | 0 | 40 | c |
| 632 | 025.0333 | 26-MAY-2006 | mdct | 40 | 2 | 29 | na | 1063.0 | 1060.4 | 26.4 | 0 | 40 | 0 | 40 | c |
| 633 | 097.0182 | 27-SEP-2000 | Iwct | 40 | 2 | 49 | na | 1039.4 | 1017.1 | 26.7 | 0 | 40 | 0 | 40 | c |
| 634 | 191.0102 | 25-MAY-1999 | mdct | 40 | 2 | 45 | na | 608.0 | 590.0 | 27.0 | 0 | 40 | 0 | 40 | c |
| 635 | 183.0831 | 17-APR-2002 | lamp | 20 | 2 | 46 | na | 165.0 | 146.0 | 27.0 | 20 | 40 | 20 | 40 | c |
| 636 | 008.0237 | 18-MAR-2002 | cont | 40 | 2 | 51 | na | 636.5 | 613.5 | 28.0 | 0 | 40 | 0 | 40 | c |
| 637 | 165.0201 | 19-APR-2005 | nrpc | 20 | 2 |  | na | 177.0 | 168.0 | 28.0 | 20 | 40 | 20 | 40 | c |
| 638 | 045.0032 | 30-NOV-1984 | Iwct | 40 | 2 | 36 | na | 767.7 | 759.8 | 28.1 | 0 | 40 | 0 | 40 | c |
| 639 | 253.0014 | 21-NOV-1985 | cont | 40 | 2 | 55 | na | 693.0 | 666.1 | 28.1 | 0 | 40 | 0 | 40 | c |
| 640 | 096.0177 | 19-OCT-2003 | pemi | 40 | 2 | 30 | na | 839.5 | 838.0 | 28.5 | 0 | 40 | 0 | 40 | c |
| 641 | 049.0224 | 22-JUN-2004 | upct | 40 | 2 | 35 | na | 1258.2 | 1252.0 | 28.8 | 0 | 40 | 0 | 40 | c |
| 642 | 009.0207 | 12-JUN-2003 | cont | 40 | 2 | 67 |  | 802.0 | 764.0 | 29.0 | 0 | 40 | 0 | 40 | c |
| 643 | 098.0180 | 20-DEC-2001 | cont | 40 | 2 | 70 | na | 845.0 | 804.8 | 29.8 | 0 | 40 | 0 | 40 | c |
| 644 | 164.1569 | 29-SEP-2005 | winn | 20 | 2 | 35 | na | 520.0 | 514.8 | 29.8 | 20 | 40 | 20 | 40 | c |
| 645 | 088.0128 | 22-MAR-1989 | saco | 40 | 2 | 42 | na | 420.0 | 408.0 | 30.0 | 0 | 40 | 0 | 40 | c |
| 646 | 202.0552 | 14-MAY-2001 | Iwct | 40 | 2 | 50 | na | 1200.8 | 1180.8 | 30.0 | 0 | 40 | 0 | 40 | c |
| 647 | 107.0217 | 10-MAY-2006 | cont | 40 | 2 | 35 | na | 682.0 | 677.0 | 30.0 | 0 | 40 | 0 | 40 | c |
| 648 | 138.0194 | 25-AUG-2005 | mdct | 40 | 2 |  |  | 773.1 | 756.2 | 30.1 | 0 | 40 | 0 | 40 | c |
| 649 | 007.1110 | 28-APR-2005 | nrpc | 20 | 2 | 42 |  | 216.2 | 205.0 | 30.8 | 20 | 40 | 20 | 40 | c |
| 650 | 021.0772 | 10-JAN-2006 | winn | 20 | 2 |  |  | 844.7 | 835.6 | 30.9 | 20 | 40 | 20 | 40 | c |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | Date Completed | USGS Study | $\left\|\begin{array}{l} (\mathrm{ft}) \\ \mathrm{sTI} \end{array}\right\|$ | AGeo | Depth <br> (ft bgs) to <br> Bedrock $\mid$ Till | Interp (ft Land Elev | $\begin{aligned} & \text { polated } \\ & \text { mst) } \\ & \text { Water } \\ & \text { Table } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ | $\begin{aligned} & \text { arated } \\ & \begin{array}{c} \text { Actu } \\ \text { Clas } \\ \text { Min } \end{array} \end{aligned}$ |  |  |  | OCU |
| 51 | 242.022 | 05-NOV-1999 | lwct | 40 |  | 34 na | 510.2 | 507.4 | 31.2 | 0 | 40 | 0 | 40 | C |
| 652 | 196.0760 | 04-FEB-2005 | Immk | 20 | 2 | 37 na | 128.0 | 122.2 | 31.2 | 20 | 40 | 20 | 40 | c |
| 653 | 115.0103 | 18-MAY-2004 | pemi | 40 | 2 | 35 na | 503.7 | 500.0 | 31.3 | 0 | 40 | 0 | 40 | c |
| 654 | 204.0123 | 08-JUL-1999 | coch | 20 | 2 | 47 na | 124.7 | 109.6 | 31.9 | 20 | 40 | 20 | 40 | c |
| 655 | 143.0687 | 12-JUN-2002 | upmk | 20 | 2 | 60 na | 394.1 | 366.2 | 32.1 | 20 | 40 | 20 | 40 | c |
| 656 | 241.0910 | 28-OCT-2005 | saco | 40 | 2 | 39 na | 597.0 | 590.3 | 32.3 | 0 | 40 | 0 | 40 | c |
| 657 | 233.0330 | 22-JUL-1997 | saco | 40 | 2 | 75 na | 490.0 | 448.0 | 33.0 | 0 | 40 | 0 | 40 | c |
| 658 | 236.0306 | 10-JUN-2002 | pemi | 40 | 2 | 62 na | 581.7 | 552.7 | 33.0 | 0 | 40 | 0 | 40 | c |
| 659 | 112.0321 | 04-MAY-2004 | mdct | 40 | 2 | 58 na | 805.0 | 780.0 | 33.0 | 0 | 40 | 0 | 40 | c |
| 660 | 241.0799 | 17-AUG-2004 | saco | 40 | 2 | 50 na | 600.0 | 583.0 | 33.0 | 0 | 40 | 0 | 40 | c |
| 661 | 165.0170 | 08-JUL-2003 | nrpc | 20 | 2 | 49 na | 174.2 | 158.6 | 33.4 | 20 | 40 | 20 | 40 | c |
| 662 | 240.0247 | 25-SEP-2002 | Iwct | 40 | 2 | 40 na | 790.1 | 783.7 | 33.6 | 0 | 40 | 0 | 40 | c |
| 663 | 039.0075 | 01-NOV-2002 | mdct | 40 | 2 | 45 na | 1389.3 | 1378.0 | 33.7 | 0 | 40 | 0 | 40 | c |
| 664 | 025.0304 | 29-APR-2005 | mdct | 40 | 2 | 44 na | 1076.6 | 1066.3 | 33.7 | 0 | 40 | 0 | 40 | c |
| 665 | 249.0116 | 23-JUL-2003 | pemi | 40 | 2 | 50 na | 704.1 | 688.0 | 33.9 | 0 | 40 | 0 | 40 | c |
| 666 | 048.0090 | 12-OCT-2002 | upct | 40 | 2 | 50 na | 1101.5 | 1085.7 | 34.2 | 0 | 40 | 0 | 40 | c |
| 667 | 136.0206 | 02-JUL-2004 | Iwct | 40 | 2 | 39 na | 1206.0 | 1201.2 | 34.2 | 0 | 40 | 0 | 40 | c |
| 668 | 119.0551 | 18-NOV-1993 | nrpc | 20 | 2 | 70 na | 217.2 | 181.8 | 34.6 | 20 | 40 | 20 | 40 | c |
| 669 | 159.0926 | 12-NOV-2004 | nrpc | 20 | 2 | 44 na | 276.7 | 267.6 | 34.9 | 20 | 40 | 20 | 40 | c |
| 670 | 253.0222 | 06-NOV-2002 | cont | 40 | 2 | 45 na | 688.0 | 678.0 | 35.0 | 0 | 40 | 0 | 40 | c |
| 671 | 233.0461 | 05-JUN-2004 | saco | 40 | 2 | 40 na | 560.0 | 555.0 | 35.0 | 0 | 40 | 0 | 40 | c |
| 672 | 008.0235 | 16-AUG-2002 | cont | 40 | 2 | 40 na | 639.4 | 634.6 | 35.2 | 0 | 40 | 0 | 40 | c |
| 673 | 232.0738 | 23-JUN-2004 | Iwct | 40 | 2 | 45 na | 499.8 | 490.0 | 35.2 | 0 | 40 | 0 | 40 | c |
| 674 | 021.0683 | 23-MAR-2004 | winn | 20 | 2 |  | 682.3 | 632.6 | 35.3 | 20 | 40 | 20 | 40 | c |
| 675 | 191.0141 | 08-JUL-2003 | mdct | 40 | 2 | 65 na | 460.0 | 430.5 | 35.5 | 0 | 40 | 0 | 40 | c |
| 676 | 074.0079 | 24-NOV-2003 | saco | 40 | 2 | 70 na | 525.1 | 490.6 | 35.5 | 0 | 40 | 0 | 40 | c |
| 677 | 161.0394 | 05-AUG-2003 | coch | 20 | 2 | 39 na | 417.0 | 414.0 | 36.0 | 20 | 40 | 20 | 40 | c |
| 678 | 025.0259 | 02-JUN-2003 | mdct | 40 | 2 | 46 na | 1084.0 | 1074.0 | 36.0 | 0 | 40 | 0 | 40 | c |
| 679 | 220.0089 | 03-AUG-2005 | upct | 40 | 2 | 75 na | 1140.0 | 1101.0 | 36.0 | 0 | 40 | 0 | 40 | c |
| 680 | 243.0343 | 22-JUL-2002 | cont | 40 | 2 |  | 463.9 | 420.0 | 36.1 | 0 | 40 | 0 | 40 | c |
| 681 | 143.0661 | 18-DEC-1998 | upmk | 20 | 2 | 65 na | 403.0 | 374.2 | 36.2 | 20 | 40 | 20 | 40 | c |
| 682 | 112.0041 | 03-DEC-1987 | mdct | 40 | 2 | 65 na | 673.4 | 645.0 | 36.6 | 20 | 40 | 20 | 40 | c |
| 683 | 259.0102 | 05-AUG-2005 | pemi | 40 | 2 |  | 718.2 | 714.8 | 36.6 | 0 | 40 | 0 | 40 | c |
| 684 | 241.0880 | 20-JUL-2005 | coch | 20 | 2 | 40 na | 605.2 | 602.0 | 36.8 | 20 | 40 | 20 | 40 | c |
| 685 | 241.0828 | 09-NOV-2004 | saco | 40 | 2 | 38 na | 618.5 | 617.4 | 36.9 | 0 | 40 | 0 | 40 | c |
| 686 | 075.0223 | 07-MAY-2004 | saco | 40 | 2 |  | 503.0 | 460.0 | 37.0 | 0 | 40 | 0 | 40 | c |
| 687 | 052.0603 | 14-MAY-2003 | saco | 40 | 2 | 45 na | 442.6 | 434.7 | 37.1 | 0 | 40 | 0 | 40 | c |
| 688 | 122.1141 | 12-JUL-2004 | nrpc | 20 | 2 | 46 na | 167.8 | 158.9 | 37.1 | 20 | 40 | 20 | 40 | c |
| 689 | 203.0764 | 26-JUL-2005 | coch | 20 | 2 |  | 225.0 | 212.1 | 37.1 | 20 | 40 | 20 | 40 | c |
| 690 | 078.0590 | 10-NOV-2003 | lamp | 20 | 2 | 50 na | 162.0 | 150.0 | 38.0 | 20 | 40 | 20 | 40 | c |
| 691 | 248.0267 | 19-JAN-2004 | cont | 40 | 2 | 43 na | 465.0 | 460.0 | 38.0 | 0 | 40 | 0 | 40 | c |
| 692 | 156.0610 | 09-OCT-2004 | nrpc | 20 | 2 | 57 na | 221.9 | 202.9 | 38.0 | 20 | 40 | 20 | 40 | c |
| 693 | 045.0611 | 30-MAY-2003 | Iwct | 40 | 2 | 65 na | 255.9 | 229.1 | 38.2 | 0 | 40 | 0 | 40 | c |
| 694 | 256.1119 | 11-SEP-1997 | lwmk | 20 | 2 | 42 na | 173.1 | 170.0 | 38.9 | 20 | 40 | 20 | 40 | c |
| 695 | 116.0425 | 26-JUN-2002 | cont | 40 | 2 | 60 na | 925.0 | 904.0 | 39.0 | 0 | 40 | 0 | 40 | c |
| 696 | 210.0311 | 15-OCT-1998 | winn | 20 | 2 | 45 na | 489.6 | 484.3 | 39.7 | 20 | 40 | 20 | 40 | c |
| 697 | 253.0128 | 08-DEC-1998 | cont | 40 | 2 | 45 na | 707.2 | 702.0 | 39.8 | 0 | 40 | 0 | 40 | c |
| 698 | 029.0745 | 21-SEP-2004 | lamp | 20 | 2 | 72 na | 147.0 | 116.2 | 41.2 | 40 | 60 | 40 | 60 | c |
| 699 | 052.0035 | 13-JUL-1985 | saco | 40 | 2 |  | 479.2 | 465.8 | 42.6 | 40 | 80 | 40 | 80 | c |
| 700 | 236.0374 | 25-MAY-2004 | pemi | 40 | 2 | 59 na | 606.7 | 590.3 | 42.6 | 40 | 80 | 40 | 80 | c |


|  | Characteristics for 1300 Verification W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type O=Overclassed C= Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | Depth (ft bgs) |  | Interp (ft m Land | olated <br> msl) <br> Water | $\begin{aligned} & \text { Satur: } \\ & \text { Calc } \end{aligned}$ | $\begin{aligned} & \text { rated } \\ & \begin{array}{r} \mathrm{Act} \\ \mathrm{Cla} \end{array} \end{aligned}$ | Thic tual ass | knes <br> Map Cla | (ft) ped ass |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 701 | 252.0213 | 13-JUN-2003 | mdct | 40 | 2 | 75 | na | 1086.6 | 1054.7 | 43.1 | 40 | 80 | 40 | 80 | C |
| 702 | 233.0095 | 27-JUL-1986 | saco | 40 | 2 | 80 | na | 470.0 | 434.2 | 44.2 | 40 | 80 | 40 | 80 | C |
| 703 | 241.0756 | 17-MAY-2004 | coch | 20 | 2 | 69 | na | 538.0 | 513.2 | 44.2 | 40 | 60 | 40 | 60 | C |
| 704 | 139.0383 | 14-MAR-2002 | nrpc | 20 | 2 | 70 | na | 181.0 | 156.4 | 45.4 | 40 | 60 | 40 | 60 | C |
| 705 | 112.0326 | 27-MAR-2000 | mdct | 40 | 2 | 65 | na | 460.0 | 441.0 | 46.0 | 40 | 80 | 40 | 80 | C |
| 706 | 187.0425 | 07-OCT-1998 | saco | 40 | 2 | 55 | na | 422.0 | 413.1 | 46.1 | 40 | 80 | 40 | 80 | C |
| 707 | 241.0724 | 10-DEC-2003 | coch | 20 | 2 | 68 | na | 597.0 | 575.2 | 46.2 | 40 | 60 | 40 | 60 | C |
| 708 | 241.0882 | 11-AUG-2005 | saco | 40 | 2 | 100 | na | 640.0 | 586.2 | 46.2 | 40 | 80 | 40 | 80 | C |
| 709 | 121.0516 | 08-MAR-2002 | cont | 40 | 2 | 54 | na | 352.0 | 346.5 | 48.5 | 40 | 80 | 40 | 80 | C |
| 710 | 038.0249 | 02-DEC-1999 | upmk | 20 | 2 | 62 | na | 430.0 | 417.9 | 49.9 | 40 | 60 | 40 | 60 | C |
| 711 | 165.0194 | 27-FEB-2004 | nrpc | 20 | 2 | 65 | na | 203.9 | 190.0 | 51.1 | 40 | 60 | 40 | 60 | C |
| 712 | 088.0020 | 20-AUG-1985 | saco | 40 | 2 | 78 | na | 440.0 | 413.7 | 51.7 | 40 | 80 | 40 | 80 | C |
| 713 | 241.0484 | 18-NOV-1998 | saco | 40 | 2 | 60 | na | 591.2 | 584.0 | 52.8 | 40 | 80 | 40 | 80 | C |
| 714 | 232.0740 | 29-JUL-2004 | Iwct | 40 | 2 | 58 | na | 465.9 | 461.0 | 53.1 | 40 | 80 | 40 | 80 | C |
| 715 | 020.0879 | 30-APR-1987 | mdmk | 20 | 2 | 78 | na | 191.0 | 166.8 | 53.8 | 40 | 60 | 40 | 60 | C |
| 716 | 118.0400 | 21-JUL-2005 | pemi | 40 | 2 | 60 | na | 478.9 | 472.9 | 54.0 | 40 | 80 | 40 | 80 | C |
| 717 | 007.0328 | 01-OCT-1990 | nrpc | 20 | 2 | 69 | na | 225.0 | 210.0 | 54.0 | 40 | 60 | 40 | 60 | C |
| 718 | 050.0149 | 07-MAR-2005 | upct | 40 | 2 | 75 | na | 1013.4 | 992.6 | 54.2 | 40 | 80 | 40 | 80 | C |
| 719 | 045.0731 | 14-JUN-2006 | Iwct | 40 | 2 | 90 | na | 334.6 | 300.0 | 55.4 | 40 | 80 | 40 | 80 | C |
| 720 | 165.0081 | 20-JUL-1994 | nrpc | 20 | 2 | 72 | na | 178.8 | 162.4 | 55.6 | 40 | 60 | 40 | 60 | C |
| 721 | 003.0208 | 17-JUN-1999 | pemi | 40 | 2 | 58 | na | 619.0 | 617.3 | 56.3 | 40 | 80 | 40 | 80 | C |
| 722 | 063.1655 | 14-JUN-2001 | lwmk | 20 | 2 | 62 | na | 215.0 | 210.0 | 57.0 | 40 | 60 | 40 | 60 | C |
| 723 | 241.0740 | 21-JAN-2004 | saco | 40 | 2 | 95 | na | 600.0 | 562.0 | 57.0 | 40 | 80 | 40 | 80 | C |
| 724 | 236.0305 | 26-MAR-2002 | pemi | 40 | 2 | 96 | na | 597.9 | 559.4 | 57.5 | 40 | 80 | 40 | 80 | C |
| 725 | 241.0796 | 12-JUL-2004 | saco | 40 | 2 | 100 | na | 625.0 | 582.5 | 57.5 | 40 | 80 | 40 | 80 | C |
| 726 | 195.0376 | 23-AUG-2003 | Iwct | 40 | 2 | 80 | na | 492.8 | 471.2 | 58.4 | 40 | 80 | 40 | 80 | C |
| 727 | 093.1088 | 23-JUN-2003 | mdmk | 20 | 2 | 84 | na | 315.0 | 290.5 | 59.5 | 40 | 60 | 40 | 60 | C |
| 728 | 233.0346 | 28-NOV-1998 | saco | 40 | 2 | 100 | na | 481.0 | 441.9 | 60.9 | 40 | 80 | 40 | 80 | C |
| 729 | 119.0703 | 16-OCT-1995 | nrpc | 20 | 2 | 80 | na | 208.1 | 189.5 | 61.4 | 60 | 80 | 60 | 80 | C |
| 730 | 007.1038 | 18-AUG-2003 | nrpc | 20 | 2 | 89 | na | 240.0 | 212.7 | 61.7 | 60 | 80 | 60 | 80 | C |
| 731 | 241.0703 | 06-OCT-2003 | saco | 40 | 2 | 80 | na | 577.0 | 559.0 | 62.0 | 40 | 80 | 40 | 80 | C |
| 732 | 031.0259 | 17-AUG-2004 | pemi | 40 | 2 | 100 | na | 482.0 | 446.4 | 64.4 | 40 | 80 | 40 | 80 | C |
| 733 | 232.0654 | 08-NOV-2001 | Iwct | 40 | 2 | 79 | na | 482.3 | 468.2 | 64.9 | 40 | 80 | 40 | 80 | C |
| 734 | 241.0704 | 09-SEP-2003 | saco | 40 | 2 | 78 | na | 598.0 | 584.9 | 64.9 | 40 | 80 | 40 | 80 | C |
| 735 | 039.0096 | 10-JUN-2005 | mdct | 40 | 2 | 68 | na | 1552.0 | 1549.0 | 65.0 | 40 | 80 | 40 | 80 | C |
| 736 | 063.1688 | 17-APR-2002 | Iwmk | 20 | 2 | 70 | na | 209.0 | 205.0 | 66.0 | 60 | 80 | 60 | 80 | C |
| 737 | 149.0354 | 28-AUG-1998 | saco | 40 | 2 | 70 | na | 491.9 | 489.1 | 67.2 | 40 | 80 | 40 | 80 | C |
| 738 | 148.0242 | 02-FEB-2005 | lamp | 20 | 2 | 87 | na | 84.5 | 65.0 | 67.5 | 60 | 80 | 60 | 80 | C |
| 739 | 027.1128 | 24-MAR-2003 | upmk | 20 | 2 | 70 | na | 200.0 | 198.8 | 68.8 | 60 | 80 | 60 | 80 | C |
| 740 | 139.0076 | 02-DEC-1988 | nrpc | 20 | 2 | 79 | na | 177.2 | 167.1 | 68.9 | 60 | 80 | 60 | 80 | C |
| 741 | 241.0897 | 29-OCT-2005 | saco | 40 | 2 | 90 | na | 628.0 | 608.4 | 70.4 | 40 | 80 | 40 | 80 | C |
| 742 | 015.1134 | 02-JUL-2004 | coch | 20 | 2 | 77 | na | 180.0 | 173.8 | 70.8 | 60 | 80 | 60 | 80 | C |
| 743 | 232.0727 | 25-NOV-2003 | Iwct | 40 | 2 | 93 | na | 485.6 | 463.9 | 71.3 | 40 | 80 | 40 | 80 | C |
| 744 | 241.0824 | 17-NOV-2004 | saco | 40 | 2 | 76 | na | 588.0 | 584.0 | 72.0 | 40 | 80 | 40 | 80 | C |
| 745 | 051.0821 | 20-AUG-2002 | upmk | 20 | 2 | 97 |  | 317.0 | 292.4 | 72.4 | 60 | 80 | 60 | 80 | C |
| 746 | 086.0182 | 16-MAY-2002 | mdct | 40 | 2 | 95 |  | 980.0 | 959.4 | 74.4 | 40 | 80 | 40 | 80 | C |
| 747 | 241.0636 | 09-JAN-2002 | saco | 40 | 2 | 106 |  | 614.4 | 583.0 | 74.6 | 40 | 80 | 40 | 80 | C |
| 748 | 004.0207 | 08-MAY-2006 | upmk | 20 | 2 | 82 |  | 290.0 | 282.7 | 74.7 | 60 | 80 | 60 | 80 | C |
| 749 | 086.0224 | 15-JUL-2004 | mdct | 40 | 2 | 96 |  | 1015.7 | 995.2 | 75.5 | 40 | 80 | 40 | 80 | C |
| 750 | 172.0349 | 04-OCT-2003 | pemi | 40 | 2 | 125 | na | 528.2 | 479.0 | 75.8 | 40 | 80 | 40 | 80 | C |


|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=$ Overclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | Depth (ft bgs) |  | Interp (ft m Land | polated <br> $\mathrm{msl})$ <br> Water | Satur <br> Calc | $\begin{array}{\|} \text { rated } \\ \text { Act } \\ \text { Cla } \\ \hline \end{array}$ | Thick tual ass | knes <br> Map <br> Cla | $\begin{aligned} & \mathrm{s}(\mathrm{ft}) \\ & \text { sped } \\ & \text { ass } \\ & \hline \end{aligned}$ |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till] | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 751 | 067.0324 | 02-JUN-2003 | coch | 20 | 2 | 109 | na | 41.0 | 8.6 | 76.6 | 60 | 80 | 60 | 80 | C |
| 752 | 096.0209 | 12-JUL-2006 | pemi | 40 | 2 | 98 | na | 885.0 | 863.7 | 76.7 | 40 | 80 | 40 | 80 | C |
| 753 | 052.0646 | 02-MAR-2004 | saco | 40 | 2 | 115 | na | 528.3 | 492.9 | 79.6 | 40 | 80 | 40 | 80 | C |
| 754 | 075.0142 | 10-NOV-1998 | saco | 40 | 2 | 82 | na | 387.0 | 385.3 | 80.3 | 80 | 120 | 80 | 120 | C |
| 755 | 047.0231 | 23-SEP-2004 | Iwct | 40 | 2 | 90 | na | 556.5 | 551.0 | 84.5 | 80 | 120 | 80 | 120 | C |
| 756 | 149.0504 | 29-MAY-2004 | saco | 40 | 2 | 90 | na | 495.6 | 491.5 | 85.9 | 80 | 120 | 80 | 120 | C |
| 757 | 052.0504 | 14-OCT-2000 | saco | 40 | 2 | 95 | na | 461.9 | 453.8 | 86.9 | 80 | 120 | 80 | 120 | C |
| 758 | 172.0372 | 26-JUN-2004 | pemi | 40 | 2 | 157 | na | 522.0 | 455.4 | 90.4 | 80 | 120 | 80 | 120 | C |
| 759 | 139.0159 | 20-APR-1993 | nrpc | 20 | 2 | 95 | na | 176.0 | 174.0 | 93.0 | 80 | 100 | 80 | 100 | C |
| 760 | 117.0180 | 20-DEC-2001 | lwct | 40 | 2 | 105 | na | 195.8 | 184.9 | 94.1 | 80 | 120 | 80 | 120 | C |
| 761 | 187.0613 | 27-JAN-2004 | saco | 40 | 2 | 128 | na | 442.0 | 411.6 | 97.6 | 80 | 120 | 80 | 120 | C |
| 762 | 232.0318 | 05-NOV-1998 | Iwct | 40 | 2 | 105 | na | 557.8 | 550.5 | 97.7 | 80 | 120 | 80 | 120 | C |
| 763 | 232.0779 | 19-AUG-2005 | Iwct | 40 | 2 | 105 | na | 492.1 | 489.2 | 102.1 | 80 | 120 | 80 | 120 | C |
| 764 | 117.0037 | 16-JAN-1989 | Iwct | 40 | 2 | 130 | na | 258.9 | 233.8 | 104.9 | 80 | 120 | 80 | 120 | C |
| 765 | 202.0642 | 08-MAY-2003 | Iwct | 40 | 2 | 127 | na | 1064.0 | 1044.9 | 107.9 | 80 | 120 | 80 | 120 | C |
| 766 | 134.0424 | 25-APR-2005 | mdct | 40 | 2 | 120 | na | 773.0 | 771.3 | 118.3 | 80 | 120 | 80 | 120 | C |
| 767 | 197.0150 | 26-MAY-1998 | pemi | 40 | 2 | 147 | na | 482.3 | 474.5 | 139.2 | 120 | 160 | 120 | 160 | C |
| 768 | 073.0052 | 26-SEP-2003 | mdct | 40 | 2 | 155 | na | 1227.6 | 1212.8 | 140.2 | 120 | 160 | 120 | 160 | C |
| 769 | 220.0082 | 15-SEP-2003 | upct | 40 | 2 | 150 | na | 979.0 | 971.0 | 142.0 | 120 | 160 | 120 | 160 | C |
| 770 | 187.0101 | 26-SEP-1986 | saco | 40 | 2 | 153 | na | 416.5 | 413.5 | 150.0 | 120 | 160 | 120 | 160 | C |
| 771 | 149.0515 | 15-JUL-2004 | saco | 40 | 2 | 183 | na | 485.0 | 459.0 | 157.0 | 120 | 160 | 120 | 160 | C |
| 772 | 033.0813 | 13-MAR-1998 | nrpc | 20 | 2 | 28 | na | 280.2 | 262.2 | 10.0 | 10 | 20 | 0 | 10 | U |
| 773 | 007.0285 | 17-OCT-1988 | nrpc | 20 | 2 | 15 | na | 262.0 | 257.0 | 10.0 | 10 | 20 | 0 | 10 | U |
| 774 | 033.0414 | 19-NOV-1991 | nrpc | 20 | 2 | 26 | na | 265.7 | 250.0 | 10.3 | 10 | 20 | 0 | 10 | U |
| 775 | 188.0657 | 20-JUL-1996 | nrpc | 20 | 2 | 12 | na | 219.0 | 217.4 | 10.4 | 10 | 20 | 0 | 10 | U |
| 776 | 033.0411 | 22-OCT-1991 | nrpc | 20 | 2 | 19 | na | 285.4 | 277.0 | 10.6 | 10 | 20 | 0 | 10 | U |
| 777 | 033.0673 | 08-AUG-1995 | nrpc | 20 | 2 | 48 | na | 347.4 | 310.0 | 10.6 | 10 | 20 | 0 | 10 | U |
| 778 | 188.1341 | 10-APR-2002 | nrpc | 20 | 2 | 30 | na | 174.3 | 155.0 | 10.7 | 10 | 20 | 0 | 10 | U |
| 779 | 007.0204 | 29-MAR-1988 | nrpc | 20 | 2 | 25 | na | 264.0 | 249.7 | 10.7 | 10 | 20 | 0 | 10 | U |
| 780 | 033.0224 | 10-NOV-1989 | nrpc | 20 | 2 | 35 | na | 388.5 | 364.6 | 11.1 | 10 | 20 | 0 | 10 | U |
| 781 | 119.0711 | 02-JAN-1996 | nrpc | 20 | 2 | 21 | na | 213.9 | 204.5 | 11.6 | 10 | 20 | 0 | 10 | U |
| 782 | 139.0198 | 12-JUL-1995 | nrpc | 20 | 2 | 35 | na | 215.0 | 192.0 | 12.0 | 10 | 20 | 0 | 10 | U |
| 783 | 159.0132 | 18-APR-1988 | nrpc | 20 | 2 | 16 | na | 255.0 | 251.0 | 12.0 | 10 | 20 | 0 | 10 | U |
| 784 | 033.0257 | 06-JUL-1990 | nrpc | 20 | 2 | 15 | na | 308.1 | 305.1 | 12.0 | 10 | 20 | 0 | 10 | U |
| 785 | 139.0189 | 28-JUN-1994 | nrpc | 20 | 2 | 50 | na | 250.0 | 212.5 | 12.5 | 10 | 20 | 0 | 10 | U |
| 786 | 159.0183 | 09-JUL-1989 | nrpc | 20 | 2 | 22 | na | 288.0 | 279.0 | 13.0 | 10 | 20 | 0 | 10 | U |
| 787 | 122.1078 | 24-JUL-2003 | nrpc | 20 | 2 | 21 | na | 204.1 | 196.6 | 13.5 | 10 | 20 | 0 | 10 | U |
| 788 | 159.0249 | 02-JUN-1991 | nrpc | 20 | 2 | 22 | na | 361.0 | 352.8 | 13.8 | 10 | 20 | 0 | 10 | U |
| 789 | 122.1110 | 08-JUL-2003 | nrpc | 20 | 2 | 23 | na | 198.0 | 189.0 | 14.0 | 10 | 20 | 0 | 10 | U |
| 790 | 139.0223 | 10-APR-1996 | nrpc | 20 | 2 | 42 | na | 199.0 | 171.7 | 14.7 | 10 | 20 | 0 | 10 | U |
| 791 | 139.0209 | 02-OCT-1995 | nrpc | 20 | 2 | 40 | na | 204.0 | 179.0 | 15.0 | 10 | 20 | 0 | 10 | U |
| 792 | 159.0494 | 22-APR-1997 | nrpc | 20 | 2 | 27 | na | 310.0 | 300.0 | 17.0 | 10 | 20 | 0 | 10 | U |
| 793 | 007.0361 | 16-JUN-1992 | nrpc | 20 | 2 | 19 | na | 270.0 | 269.0 | 18.0 | 10 | 20 | 0 | 10 | U |
| 794 | 033.0132 | 08-FEB-1988 | nrpc | 20 | 2 | 28 | na | 334.6 | 324.8 | 18.2 | 10 | 20 | 0 | 10 | U |
| 795 | 033.0507 | 27-AUG-1993 | nrpc | 20 | 2 | 40 | na | 285.4 | 264.0 | 18.6 | 10 | 20 | 0 | 10 | U |
| 796 | 119.1249 | 09-JUL-2004 | nrpc | 20 | 2 | 28 | na | 183.1 | 174.0 | 18.9 | 10 | 20 | 0 | 10 | U |
| 797 | 033.0809 | 27-JAN-1998 | nrpc | 20 | 2 | 30 | na | 311.0 | 301.0 | 20.0 | 20 | 40 | 0 | 10 | U |
| 798 | 143.0863 | 15-DEC-2005 | upmk | 20 | 2 | 40 |  | 365.0 | 345.0 | 20.0 | 20 | 40 | 0 | 20 | U |
| 799 | 188.1703 | 21-JUL-2006 | nrpc | 20 | 2 | 22 |  | 182.0 | 180.0 | 20.0 | 20 | 40 | 0 | 10 | U |
| 800 | 122.1056 | 07-JUN-2001 | nrpc | 20 | 2 | 45 | na | 233.9 | 209.3 | 20.4 | 20 | 40 | 0 | 10 | U |


| Chara |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | $\begin{gathered} \text { Date } \\ \text { Completed } \end{gathered}$ | USGS Study | $\binom{(\mathrm{ft})}{\mathrm{cti}}$ | AGeo | $\begin{array}{\|c} \begin{array}{c} \text { Depth } \\ (\mathrm{ft} \mathrm{bgs}) \mathrm{t} \end{array} \\ \hline \text { Bedrock } \\ \hline \end{array}$ | $\frac{\text { to }}{1 \text { Till }}$ | $\begin{array}{r} \begin{array}{c} \text { Inter } \\ \text { (ft } \\ \text { Land } \\ \text { Elev } \end{array} \end{array}$ | $\begin{aligned} & \text { polated } \\ & \text { msI) } \\ & \text { Water } \\ & \text { Wable } \\ & \text { Tal } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satul } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ | rated <br> Actua <br> Min |  | $\begin{aligned} & \text { knes } \\ & \begin{array}{c} \text { Map } \\ \text { Cla } \end{array} \\ & \hline \end{aligned}$ Min |  | OCU |
| 801 | 239.0612 | 24-OCT-2005 | winn | 20 | 2 | 29 | na | 660.0 | 651.4 | 20.4 | 20 | 40 | 0 | 20 | U |
| 802 | 188.0652 | 12-SEP-1996 | nrpo | 20 | 2 | 30 | na | 170.6 | 161.6 | 21.0 | 20 | 40 | 0 | 10 | $\cup$ |
| 803 | 142.2304 | 06-JUL-2006 | Iwmk | 20 | 2 | 30 | na | 232.0 | 223.0 | 21.0 | 20 | 40 | 0 | 20 | u |
| 804 | 164.1267 | 12-AUG-2002 | winn | 20 | 2 | 38 | na | 608.7 | 592.0 | 21.3 | 20 | 40 | 0 | 20 | U |
| 805 | 021.0694 | 08-JUL-2004 | winn | 20 | 2 | 40 | na | 606.3 | 587.7 | 21.4 | 20 | 40 | 0 | 20 | u |
| 806 | 015.1103 | 22-DEC-2003 | lamp | 20 | 2 | 23 | na | 166.5 | 165.0 | 21.5 | 20 | 40 | 0 | 20 | u |
| 807 | 006.1528 | 30-JAN-2006 | winn | 20 | 2 | 30 | na | 564.9 | 556.4 | 21.5 | 20 | 40 | 0 | 20 | u |
| 808 | 119.0697 | 20-NOV-1995 | nrpc | 20 | 2 | 45 | na | 223.4 | 200.0 | 21.6 | 20 | 40 | 0 | 10 | u |
| 809 | 029.0701 | 20-OCT-2003 | lamp | 20 | 2 | 27 | na | 139.5 | 135.0 | 22.5 | 20 | 40 | 0 | 20 | u |
| 810 | 159.0489 | 30-APR-1997 | nrpc | 20 | 2 | 26 | na | 268.4 | 265.0 | 22.6 | 20 | 40 | 0 | 10 | U |
| 811 | 067.0386 | 24-AUG-2005 | coch | 20 | 2 | 28 | na | 54.7 | 49.3 | 22.6 | 20 | 40 | 10 | 20 | u |
| 812 | 174.0506 | 22-DEC-2000 | mdmk | 20 | 2 | 30 | na | 1030.0 | 1022.9 | 22.9 | 20 | 40 | 0 | 20 | u |
| 813 | 015.0996 | 05-DEC-2002 | coch | 20 | 2 | 25 | na | 200.0 | 197.9 | 22.9 | 20 | 40 | 0 | 10 | U |
| 814 | 200.0716 | 12-NOV-1997 | lamp | 20 | 2 | 25 | na | 192.0 | 190.0 | 23.0 | 20 | 40 | 0 | 20 | u |
| 815 | 089.0775 | 02-APR-2002 | lamp | 20 | 2 | 30 | na | 172.0 | 165.0 | 23.0 | 20 | 40 | 0 | 20 | u |
| 816 | 006.1448 | 04-MAY-2005 | winn | 20 | 2 |  | na | 540.0 | 538.0 | 23.0 | 20 | 40 | 0 | 20 | u |
| 817 | 067.0398 | 03-OCT-2005 | coch | 20 | 2 | 32 | na | 32.5 | 23.8 | 23.3 | 20 | 40 | 10 | 20 | u |
| 818 | 119.0309 | 10-JUN-1988 | nrpe | 20 | 2 |  | na | 289.0 | 285.4 | 23.4 | 20 | 40 | 0 | 10 | u |
| 819 | 258.0557 | 06-AUG-2002 | winn | 20 | 2 |  | na | 640.0 | 628.7 | 23.7 | 20 | 40 | 0 | 20 | U |
| 820 | 007.0385 | 04-JUN-1993 | nrpc | 20 | 2 | 34 | na | 230.0 | 220.0 | 24.0 | 20 | 40 | 0 | 10 | u |
| 821 | 225.0954 | 23-JUL-2004 | lamp | 20 | 2 |  | na | 136.8 | 105.0 | 24.2 | 20 | 40 | 0 | 20 | u |
| 822 | 156.0291 | 22-APR-1989 | nrpc | 20 | 2 |  | na | 219.0 | 216.4 | 24.4 | 20 | 40 | 0 | 10 | u |
| 823 | 033.0475 | 07-OCT-1992 | nrpc | 20 | 2 | 25 | na | 297.0 | 296.5 | 24.5 | 20 | 40 | 10 | 20 | u |
| 824 | 156.0414 | 27-APR-1996 | nrpc | 20 | 2 |  | na | 230.0 | 218.0 | 25.0 | 20 | 40 | 0 | 10 | u |
| 825 | 159.0229 | 25-FEB-1991 | nrpc | 20 | 2 | 30 | na | 387.0 | 382.0 | 25.0 | 20 | 40 | 0 | 10 | u |
| 826 | 167.0975 | 13-AUG-2003 | mdmk | 20 | 2 | 30 | na | 465.0 | 460.0 | 25.0 | 20 | 40 | 0 | 20 | u |
| 827 | 029.0754 | 11-NOV-2004 | lamp | 20 | 2 | 30 | na | 136.0 | 131.5 | 25.5 | 20 | 40 | 0 | 20 | U |
| 828 | 171.0231 | 21-OCT-2002 | lamp | 20 | 2 | 38 | na | 115.0 | 103.0 | 26.0 | 20 | 40 | 0 | 20 | u |
| 829 | 254.0151 | 08-DEC-1995 | nrpc | 20 | 2 | 40 | na | 673.9 | 660.0 | 26.1 | 20 | 40 | 0 | 10 | u |
| 830 | 006.1307 | 07-JAN-2004 | winn | 20 | 2 | 28 | na | 538.6 | 537.0 | 26.4 | 20 | 40 | 0 | 20 | u |
| 831 | 029.0752 | 18-NOV-2004 | lamp | 20 | 2 |  | na | 114.0 | 100.5 | 26.5 | 20 | 40 | 0 | 20 | U |
| 832 | 188.1326 | 29-OCT-2001 | nrpc | 20 | 2 | 30 | na | 163.3 | 160.0 | 26.7 | 20 | 40 | 0 | 10 | u |
| 833 | 061.0762 | 30-NOV-1999 | lamp | 20 | 2 | 40 | na | 260.0 | 246.8 | 26.8 | 20 | 40 | 0 | 20 | U |
| 834 | 156.0271 | 10-NOV-1988 | nrpc | 20 | 2 |  | na | 210.0 | 198.0 | 27.0 | 20 | 40 | 10 | 20 | U |
| 835 | 078.0683 | 04-NOV-2005 | lamp | 20 | 2 | 50 | na | 176.0 | 153.0 | 27.0 | 20 | 40 | 0 | 20 | u |
| 836 | 139.0166 | 03-JUN-1992 | nrpc | 20 | 2 | 42 | na | 171.0 | 156.1 | 27.1 | 20 | 40 | 10 | 20 | U |
| 837 | 256.1680 | 23-MAR-2000 | Iwmk | 20 | 2 |  | na | 192.7 | 184.9 | 27.2 | 20 | 40 | 0 | 20 | U |
| 838 | 089.0774 | 10-SEP-2002 | lamp | 20 | 2 | 28 | na | 139.0 | 138.4 | 27.4 | 20 | 40 | 0 | 20 | u |
| 839 | 159.0281 | 20-MAY-1993 | nrpc | 20 | 2 | 30 | na | 310.0 | 307.5 | 27.5 | 20 | 40 | 10 | 20 | U |
| 840 | 129.0793 | 02-JUL-2002 | Iwm | 20 | 2 |  | na | 121.4 | 119.0 | 27.6 | 20 | 40 | 0 | 20 | U |
| 841 | 254.0078 | 11-MAY-1988 | nrpc | 20 | 2 | 34 | na | 696.0 | 690.0 | 28.0 | 20 | 40 | 0 | 10 | u |
| 842 | 170.0431 | 18-MAR-1999 | coch | 20 | 2 | 30 | na | 522.0 | 520.0 | 28.0 | 20 | 40 | 0 | 20 | u |
| 843 | 188.0756 | 19-MAR-1997 | nrpc | 20 | 2 |  | na | 150.0 | 140.5 | 28.5 | 20 | 40 | 10 | 20 | U |
| 844 | 156.0572 | 16-JUL-2002 | nrpc | 20 | 2 | 56 | na | 192.0 | 164.9 | 28.9 | 20 | 40 | 10 | 20 | u |
| 845 | 033.1063 | 17-AUG-2004 | nrpc | 20 | 2 | 60 | na | 447.0 | 416.0 | 29.0 | 20 | 40 | 0 | 10 | U |
| 846 | 033.0669 | 25-OCT-1995 | nrpc | 20 | 2 |  | na | 292.0 | 271.5 | 29.5 | 20 | 40 | 10 | 20 | U |
| 847 | 078.0711 | 10-APR-2006 | lamp | 20 | 2 | 45 | na | 156.5 | 141.0 | 29.5 | 20 | 40 | 0 | 20 | u |
| 848 | 021.0681 | 18-SEP-2003 | winn | 20 | 2 | 50 |  | 660.0 | 640.0 | 30.0 | 20 | 40 | 0 | 20 | u |
| 849 | 200.1105 | 22-JAN-2004 | lamp | 20 | 2 |  |  | 199.0 | 197.4 | 30.4 | 20 | 40 | 0 | 20 | u |
| 850 | 143.0875 | 28-MAR-2006 | upmk | 20 | 2 |  |  | 353.7 | 347.2 | 30.5 | 20 | 40 | 0 | 20 | U |


|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology $1=100 \%$ Till $2=$ Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| We | WRB | $\begin{gathered} \text { Date } \\ \text { Completed } \end{gathered}$ | USGS Study | $\left\|\begin{array}{l} (\mathrm{ft}) \\ \mathrm{sTI} \end{array}\right\|$ |  | $\begin{array}{\|c} \begin{array}{c} \text { Depth } \\ (\mathrm{ft} \mathrm{bgs)} \mathrm{t} \end{array} \\ \hline \text { Bedrock } \\ \hline \end{array}$ | $\frac{\text { to }}{1)_{\text {Till }}}$ | $\begin{array}{r} \text { Interpo } \\ \text { (ft m } \\ \text { Land } \\ \text { Elev } \end{array}$ | $\begin{aligned} & \text { polated } \\ & \text { msI) } \\ & \text { Water } \\ & \text { Table } \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ | (eated $\begin{aligned} & \text { Actua } \\ & \text { Clas } \\ & \text { Min }\end{aligned}$ |  | $\begin{aligned} & \text { cknes } \\ & \begin{array}{c} \text { Map } \\ \text { Cla } \\ \text { Min } \end{array} \end{aligned}$ |  |  |
| 51 | 083.0302 | 08-OCT-2002 | coch | 20 | 2 | 35 | na | 284.0 | 280.0 | 31.0 | 20 | 40 | 0 | 20 | U |
| 852 | 029.0781 | 21-SEP-2005 | lamp | 20 | 2 | 46 | na | 134.1 | 119.5 | 31.4 | 20 | 40 | 0 | 20 | U |
| 853 | 119.0480 | 05-OCT-1992 | nrpc | 20 | 2 | 47 | na | 204.7 | 189.3 | 31.6 | 20 | 40 | 10 | 20 | u |
| 854 | 171.0239 | 16-DEC-2002 | lamp | 20 | 2 | 54 | na | 123.0 | 100.6 | 31.6 | 20 | 40 | 0 | 20 | u |
| 855 | 083.0287 | 06-JUN-1999 | coch | 20 | 2 | 40 | na | 285.1 | 277.0 | 31.9 | 20 | 40 | 0 | 20 | u |
| 856 | 044.0522 | 11-AUG-1997 | lamp | 20 | 2 | 45 | na | 179.0 | 166.2 | 32.2 | 20 | 40 | 0 | 20 | u |
| 857 | 105.0233 | 13-APR-2005 | Immk | 20 | 2 | 41 | na | 73.8 | 65.9 | 33.1 | 20 | 40 | 0 | 20 | u |
| 858 | 139.0219 | 19-DEC-1993 | nrpc | 20 | 2 | 50 | na | 178.0 | 161.4 | 33.4 | 20 | 40 | 0 | 10 | u |
| 859 | 139.0201 | 28-JUN-1995 | nrpc | 20 | 2 | 82 | na | 218.2 | 170.0 | 33.8 | 20 | 40 | 0 | 10 | u |
| 860 | 188.1550 | 23-DEC-2003 | nrpc | 20 | 2 | 50 | na | 144.4 | 128.3 | 33.9 | 20 | 40 | 10 | 20 | u |
| 861 | 159.0831 | 25-APR-2003 | nrpc | 20 | 2 | 52 | na | 301.0 | 283.0 | 34.0 | 20 | 40 | 0 | 10 | u |
| 862 | 204.0143 | 02-AUG-2006 | coch | 20 | 2 | 55 | na | 81.0 | 60.0 | 34.0 | 20 | 40 | 0 | 10 | U |
| 863 | 112.0350 | 28-APR-2005 | mdct | 40 | 2 | 38 | na | 760.0 | 756.5 | 34.5 | 20 | 40 | 0 | 20 | u |
| 864 | 017.0126 | 25-FEB-2002 | mdct | 40 | 2 | 65 | na | 686.4 | 656.1 | 34.7 | 20 | 40 | 0 | 20 | u |
| 865 | 089.0532 | 24-APR-1998 | lamp | 20 | 2 | 45 | na | 150.0 | 140.0 | 35.0 | 20 | 40 | 0 | 20 | u |
| 866 | 007.1152 | 11-AUG-2006 | nrpc | 20 | 2 | 38 | na | 235.0 | 232.0 | 35.0 | 20 | 40 | 0 | 10 | u |
| 867 | 033.0623 | 04-JAN-1995 | nrpc | 20 | 2 | 82 | na | 351.4 | 304.5 | 35.1 | 20 | 40 | 0 | 10 | u |
| 868 | 234.0186 | 02-AUG-2004 | mdmk | 20 | 2 | 38 | na | 1053.0 | 1050.8 | 35.8 | 20 | 40 | 0 | 20 | u |
| 869 | 119.1272 | 08-OCT-2004 | nrpc | 20 | 2 | 56 | na | 220.0 | 200.0 | 36.0 | 20 | 40 | 10 | 20 | U |
| 870 | 188.1646 | 23-MAY-2005 | nrpc | 20 | 2 | 38 | na | 133.0 | 131.0 | 36.0 | 20 | 40 | 10 | 20 | u |
| 871 | 167.1016 | 29-APR-2004 | mdmk | 20 | 2 |  | na | 367.6 | 355.7 | 36.1 | 20 | 40 | 0 | 20 | u |
| 872 | 188.1560 | 18-MAY-2004 | nrpc | 20 | 2 |  | na | 181.0 | 157.2 | 36.2 | 20 | 40 | 0 | 10 | u |
| 873 | 083.0451 | 17-NOV-2005 | coch | 20 | 2 | 40 | na | 315.4 | 311.7 | 36.3 | 20 | 40 | 0 | 20 | u |
| 874 | 188.0452 | 12-AUG-1993 | nrpc | 20 | 2 |  | na | 154.2 | 141.0 | 36.8 | 20 | 40 | 0 | 10 | u |
| 875 | 051.0790 | 17-JUN-2005 | upmk | 20 | 2 | 43 | na | 334.0 | 328.0 | 37.0 | 20 | 40 | 0 | 20 | u |
| 876 | 033.0471 | 26-OCT-1992 | nrpc | 20 | 2 | 48 | na | 250.0 | 239.2 | 37.2 | 20 | 40 | 10 | 20 | u |
| 877 | 234.0145 | 08-MAY-2001 | mdmk | 20 | 2 |  | na | 884.0 | 881.8 | 37.8 | 20 | 40 | 0 | 20 | u |
| 878 | 139.0092 | 17-JAN-1991 | nrpc | 20 | 2 |  | na | 185.0 | 173.1 | 38.1 | 20 | 40 | 10 | 20 | u |
| 879 | 156.0301 | 12-SEP-1989 | nrpc | 20 | 2 | 47 | na | 209.0 | 201.0 | 39.0 | 20 | 40 | 10 | 20 | u |
| 880 | 078.0548 | 12-APR-2002 | lamp | 20 | 2 |  | na | 133.0 | 102.0 | 39.0 | 20 | 40 | 0 | 20 | u |
| 881 | 007.0359 | 23-FEB-1992 | nrpc | 20 | 2 |  | na | 275.0 | 249.3 | 39.3 | 20 | 40 | 0 | 20 | U |
| 882 | 078.0712 | 18-APR-2006 | lamp | 20 | 2 | 57 | na | 136.0 | 118.5 | 39.5 | 20 | 40 | 0 | 20 | u |
| 883 | 188.0388 | 03-JUL-1991 | nrpc | 20 | 2 | 55 | na | 156.2 | 141.0 | 39.8 | 20 | 40 | 10 | 20 | u |
| 884 | 015.0992 | 16-APR-2003 | coch | 20 | 2 |  | na | 195.0 | 191.8 | 39.8 | 20 | 40 | 10 | 20 | u |
| 885 | 188.0398 | 13-AUG-1992 | nrpc | 20 | 2 | 49 | na | 153.9 | 144.9 | 40.0 | 40 | 60 | 0 | 10 | u |
| 886 | 183.0864 | 01-OCT-2003 | lamp | 20 | 2 | 45 | na | 231.0 | 226.0 | 40.0 | 40 | 60 | 0 | 20 | u |
| 887 | 154.0234 | 13-MAY-2005 | mdmk | 20 | 2 |  | na | 396.0 | 380.0 | 40.0 | 40 | 60 | 0 | 20 | u |
| 888 | 009.0198 | 25-SEP-2003 | cont | 40 | 2 | 50 | na | 819.0 | 809.2 | 40.2 | 40 | 80 | 0 | 40 | u |
| 889 | 142.2178 | 02-JUL-2003 | lwm | 20 | 2 |  | na | 236.8 | 223.2 | 40.4 | 40 | 60 | 0 | 20 | u |
| 890 | 158.0244 | 04-NOV-2005 | upct | 40 | 2 |  | na | 1137.0 | 1120.0 | 41.0 | 40 | 80 | 0 | 40 | u |
| 891 | 161.0238 | 16-AUG-1995 | coch | 20 | 2 | 47 | na | 427.9 | 422.0 | 41.1 | 40 | 60 | 20 | 40 | u |
| 892 | 119.0412 | 19-JUN-1991 | nrpc | 20 | 2 | 60 | na | 192.6 | 173.9 | 41.3 | 40 | 60 | 10 | 20 | u |
| 893 | 244.0091 | 19-SEP-2005 | pemi | 40 | 2 |  | na | 769.9 | 758.7 | 41.8 | 40 | 80 | 0 | 40 | u |
| 894 | 191.0166 | 08-JUN-2006 | mdct | 40 | 2 | 45 | na | 578.0 | 574.9 | 41.9 | 40 | 80 | 0 | 40 | u |
| 895 | 006.1291 | 04-JUN-2001 | winn | 20 | 2 |  | na | 529.7 | 522.7 | 42.0 | 40 | 60 | 20 | 40 | u |
| 896 | 188.1349 | 15-JAN-2002 | nrpe | 20 | 2 |  | na | 150.9 | 143.0 | 42.1 | 40 | 60 | 10 | 20 | U |
| 897 | 091.0858 | 28-APR-2006 | upmk | 20 | 2 | 50 | na | 632.9 | 625.0 | 42.1 | 40 | 60 | 0 | 20 | u |
| 898 | 033.1085 | 14-DEC-2004 | nrpc | 20 | 2 |  |  | 265.7 | 248.0 | 42.3 | 40 | 60 | 10 | 20 | u |
| 899 | 252.0228 | 06-AUG-2004 | mdct | 40 | 2 | 45 |  | 1019.5 | 1017.0 | 42.5 | 40 | 80 | 0 | 40 | u |
| 900 | 089.0883 | 26-JUL-2004 | lamp | 20 | 2 |  |  | 143.5 | 129.0 | 42.5 | 40 | 60 | 20 | 40 | $u$ |


|  | Characteristics for 1300 Verification Wells |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology $1=100 \%$ Till $2=$ Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O}$ verclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WRB | Date Completed | USGS Study | $\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline(\mathrm{tr}) \\ \mathrm{STI} \end{array}\right)$ | AGeo | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Depth } \\ \text { (ft bgs) to } \end{array} \\ \hline \text { Bedrock } \end{array} \text { Till } \mid$ | $\begin{array}{r} \begin{array}{r} \text { Interp } \\ \text { (ft m } \\ \text { Land } \\ \text { Elev } \end{array} \\ \hline \end{array}$ | polated <br> msl) <br> Water <br> Table | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ |  |  |  |  | OCU |
| 01 | 254.0147 | 06-SEP-1995 | nrpc | 20 | 2 | 50 na | 490.1 | 482.8 | 42.7 | 40 | 60 | 20 | 40 | U |
| 902 | 143.0737 | 30-JUN-2003 | upmk | 20 | 2 | 69 na | 391.0 | 365.0 | 43.0 | 40 | 60 | 0 | 20 | $u$ |
| 903 | 032.0102 | 01-MAY-2004 | coch | 20 | 2 | 70 na | 548.0 | 521.0 | 43.0 | 40 | 60 | 20 | 40 | U |
| 904 | 008.0278 | 18-JUN-2004 | cont | 40 | 2 | 60 na | 649.0 | 632.0 | 43.0 | 40 | 80 | 0 | 40 | u |
| 905 | 189.0164 | 28-MAY-1998 | upmk | 20 | 2 | 67 na | 300.0 | 276.1 | 43.1 | 40 | 60 | 20 | 40 | u |
| 906 | 256.0760 | 06-DEC-1993 | Immk | 20 | 2 | 60 na | 196.8 | 180.0 | 43.2 | 40 | 60 | 0 | 20 | u |
| 907 | 063.1653 | 06-SEP-2001 | Immk | 20 | 2 | 50 na | 212.0 | 205.3 | 43.3 | 40 | 60 | 0 | 20 | u |
| 908 | 092.0101 | 18-SEP-2003 | lwct | 40 | 2 | 54 na | 857.8 | 847.4 | 43.6 | 40 | 80 | 0 | 40 | u |
| 909 | 133.0144 | 10-MAY-2005 | lwct | 40 | 2 | 45 na | 327.4 | 326.0 | 43.6 | 40 | 80 | 0 | 40 | u |
| 910 | 143.0870 | 09-FEB-2006 | upmk | 20 | 2 | 55 na | 378.0 | 366.6 | 43.6 | 40 | 60 | 0 | 20 | u |
| 911 | 062.0271 | 25-SEP-2003 | cont | 40 | 2 | 66 na | 675.0 | 652.9 | 43.9 | 40 | 80 | 0 | 40 | U |
| 912 | 142.1839 | 14-DEC-1999 | Iwmk | 20 | 2 | 60 na | 237.0 | 221.0 | 44.0 | 40 | 60 | 0 | 20 | U |
| 913 | 147.0241 | 16-DEC-2003 | nrpc | 20 | 2 | 65 na | 803.5 | 782.5 | 44.0 | 40 | 60 | 0 | 10 | u |
| 914 | 232.0684 | 23-AUG-2001 | Iwct | 40 | 2 | 50 na | 544.5 | 539.0 | 44.5 | 40 | 80 | 0 | 40 | u |
| 915 | 020.1508 | 06-NOV-1995 | Immk | 20 | 2 | 49 na | 225.0 | 220.5 | 44.5 | 40 | 60 | 20 | 40 | U |
| 916 | 033.1067 | 19-AUG-2004 | nrpc | 20 | 2 | 47 na | 226.4 | 224.0 | 44.6 | 40 | 60 | 20 | 40 | u |
| 917 | 138.0154 | 07-MAY-2003 | mdct | 40 | 2 | 77 na | 742.0 | 710.0 | 45.0 | 40 | 80 | 20 | 40 | u |
| 918 | 015.1170 | 27-OCT-2004 | coch | 20 | 2 | 47 na | 299.1 | 297.3 | 45.2 | 40 | 60 | 0 | 10 | u |
| 919 | 051.0737 | 12-NOV-2004 | cont | 40 | 2 | 73 na | 370.0 | 342.7 | 45.7 | 40 | 80 | 0 | 40 | u |
| 920 | 121.0515 | 01-AUG-2002 | cont | 40 | 2 | 54 na | 423.0 | 415.0 | 46.0 | 40 | 80 | 0 | 40 | u |
| 921 | 026.0127 | 16-OCT-2002 | upmk | 20 | 2 |  | 422.0 | 411.0 | 46.0 | 40 | 60 | 0 | 20 | u |
| 922 | 136.0187 | 25-JUN-2003 | Iwct | 40 | 2 | 48 na | 1205.0 | 1203.0 | 46.0 | 40 | 80 | 0 | 40 | u |
| 923 | 232.0735 | 25-MAY-2004 | Iwct | 40 | 2 | 48 na | 607.0 | 605.2 | 46.2 | 40 | 80 | 0 | 40 | u |
| 924 | 033.0402 | 13-JUN-1991 | nrpc | 20 | 2 |  | 231.6 | 221.0 | 46.4 | 40 | 60 | 10 | 20 | u |
| 925 | 180.0250 | 28-SEP-2004 | Immk | 20 | 2 | 67 na | 68.9 | 48.3 | 46.4 | 40 | 60 | 0 | 20 | u |
| 926 | 058.0152 | 07-AUG-2003 | cont | 40 | 2 | 67 na | 682.0 | 662.0 | 47.0 | 40 | 80 | 0 | 40 | u |
| 927 | 025.0285 | 12-JUL-2004 | mdct | 40 | 2 | 57 na | 1016.1 | 1006.2 | 47.1 | 40 | 80 | 0 | 40 | u |
| 928 | 007.0218 | 09-JUN-1988 | nrpc | 20 | 2 | 55 na | 272.7 | 264.8 | 47.1 | 40 | 60 | 0 | 10 | u |
| 929 | 075.0253 | 12-DEC-2005 | saco | 40 | 2 | 56 na | 436.4 | 428.0 | 47.6 | 40 | 80 | 0 | 40 | u |
| 930 | 220.0072 | 16-JUL-2002 | upct | 40 | 2 | 55 na | 916.9 | 910.0 | 48.1 | 40 | 80 | 0 | 40 | u |
| 931 | 135.0629 | 20-JUN-2003 | lamp | 20 | 2 | 110 na | 191.9 | 130.0 | 48.1 | 40 | 60 | 20 | 40 | u |
| 932 | 047.0223 | 19-MAR-2004 | Iwct | 40 | 2 | 55 na | 534.2 | 527.5 | 48.3 | 40 | 80 | 0 | 40 | u |
| 933 | 188.1376 | 20-JUN-2003 | nrpc | 20 | 2 |  | 147.6 | 131.0 | 48.4 | 40 | 60 | 10 | 20 | u |
| 934 | 239.0610 | 01-NOV-2005 | winn | 20 | 2 | 50 na | 573.0 | 571.4 | 48.4 | 40 | 60 | 20 | 40 | U |
| 935 | 203.0595 | 04-NOV-2003 | coch | 20 | 2 | 50 na | 229.0 | 227.5 | 48.5 | 40 | 60 | 0 | 10 | u |
| 936 | 242.0317 | 20-OCT-2004 | Iwct | 40 | 2 |  | 485.2 | 473.7 | 48.5 | 40 | 80 | 0 | 40 | u |
| 937 | 139.0081 | 15-AUG-1989 | nrpc | 20 | 2 |  | 175.0 | 153.6 | 48.6 | 40 | 60 | 10 | 20 | U |
| 938 | 118.0322 | 23-AUG-2002 | pemi | 40 | 2 | 98 na | 539.0 | 490.2 | 49.2 | 40 | 80 | 0 | 40 | u |
| 939 | 214.0032 | 03-MAY-2000 | lwmk | 20 | 2 |  | 88.6 | 74.9 | 49.3 | 40 | 60 | 0 | 20 | u |
| 940 | 232.0655 | 10-DEC-2001 | Iwct | 40 | 2 |  | 604.8 | 597.4 | 49.6 | 40 | 80 | 0 | 40 | U |
| 941 | 036.0476 | 29-DEC-2000 | mdct | 40 | 2 | 65 na | 892.4 | 877.0 | 49.6 | 40 | 80 | 0 | 20 | u |
| 942 | 119.0676 | 02-OCT-1995 | nrpc | 20 | 2 |  | 219.5 | 189.5 | 50.0 | 40 | 60 | 10 | 20 | u |
| 943 | 063.1686 | 16-OCT-2002 | lwmk | 20 | 2 |  | 310.0 | 295.0 | 50.0 | 40 | 60 |  | 20 | u |
| 944 | 087.0181 | 22-OCT-2003 | upmk | 20 | 2 | 70 na | 290.0 | 270.0 | 50.0 | 40 | 60 | 0 | 20 | u |
| 945 | 014.0547 | 23-MAY-2006 | upmk | 20 | 2 |  | 537.0 | 507.0 | 50.0 | 40 | 60 | 0 | 20 | u |
| 946 | 139.0208 | 13-NOV-1995 | nrpc | 20 | 2 |  | 182.0 | 167.4 | 50.4 | 40 | 60 | 0 | 10 | u |
| 947 | 170.0589 | 18-NOV-2005 | winn | 20 | 2 | 60 na | 700.0 | 690.9 | 50.9 | 40 | 60 | 0 | 20 | u |
| 948 | 254.0277 | 20-MAR-2001 | nrpe | 20 | 2 | 80 na | 760.0 | 731.0 | 51.0 | 40 | 60 | 0 | 10 | u |
| 949 | 007.0481 | 12-SEP-1994 | nrpc | 20 | 2 |  | 243.0 | 241.3 | 51.3 | 40 | 60 | 20 | 40 | U |
| 950 | 196.0710 | 13-SEP-2002 | lwmk | 20 | 2 |  | 113.2 | 110.0 | 51.8 | 40 | 60 | 0 | 20 | U |


|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table-Specific Acronyms <br> WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type O=Overclassed C=Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |
| W | WRB | $\begin{aligned} & \text { Date } \\ & \text { Completed } \end{aligned}$ | USGS | $\begin{aligned} & 5 \\ & \left.\begin{array}{l} (\mathrm{ft} \\ \mathrm{ysi} \end{array}\right) \end{aligned}$ | AGeo | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Depth } \\ \text { (ft bgs) to } \end{array} \\ \hline \text { Bedrock } \mid \text { Till } \end{array}$ | $\begin{array}{r} \begin{array}{r} \text { Interp } \\ \text { (ft n } \\ \text { Land } \\ \text { Elev } \end{array} \\ \hline \end{array}$ | $\begin{aligned} & \text { polated } \\ & \text { msI) } \\ & \begin{array}{l} \text { Water } \\ \text { Table } \end{array} \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Satu } \\ \text { Calc } \\ \text { ST } \\ \hline \end{array}$ | \| $\begin{aligned} & \text { Actua } \\ & \text { Clas } \\ & \text { Min }\end{aligned}$ | Thick <br> Thas <br> Max <br> Max | knes <br> Map <br> Cla <br> Min | $\begin{aligned} & \hline \text { ss (ft) } \\ & \text { pped } \\ & \text { ass } \\ & \hline \text { Max } \end{aligned}$ |  |
| 951 | 256.1806 | 18-MAR-2004 | Iwmk | 20 | 2 | 66 na | 179.0 | 164.8 | 51.8 | 40 | 60 | 0 | 20 | U |
| 952 | 210.0538 | 15-JUL-2003 | pemi | 40 | 2 | 60 na | 535.8 | 527.7 | 51.9 | 40 | 80 | 0 | 40 | U |
| 953 | 107.0146 | 23-AUG-2000 | cont | 40 | 2 | 80 na | 755.0 | 727.0 | 52.0 | 40 | 80 | 0 | 40 | u |
| 954 | 087.0197 | 10-SEP-2004 | pemi | 40 | 2 | 80 na | 416.8 | 388.8 | 52.0 | 40 | 80 | 0 | 40 | U |
| 955 | 258.0636 | 29-MAR-2004 | winn | 20 | 2 | 80 na | 582.7 | 554.9 | 52.2 | 40 | 60 | 20 | 40 | u |
| 956 | 239.0522 | 07-MAY-2003 | winn | 20 | 2 | 78 na | 564.7 | 539.0 | 52.3 | 40 | 60 | 20 | 40 | U |
| 957 | 224.0098 | 12-SEP-2003 | upct | 40 | 2 | 96 na | 928.5 | 884.9 | 52.4 | 40 | 80 | 0 | 40 | U |
| 958 | 035.0381 | 02-JUL-2004 | pemi | 40 | 2 | 67 na | 604.6 | 590.3 | 52.7 | 40 | 80 | 0 | 40 | u |
| 959 | 087.0143 | 19-MAR-2002 | pemi | 40 | 2 | 60 na | 442.0 | 434.9 | 52.9 | 40 | 80 | 0 | 40 | U |
| 960 | 115.0088 | 03-OCT-2003 | pemi | 40 | 2 | 55 na | 462.0 | 460.0 | 53.0 | 40 | 80 | 0 | 40 | U |
| 961 | 180.0237 | 22-APR-2003 | Immk | 20 | 2 | 57 na | 64.0 | 60.0 | 53.0 | 40 | 60 | 0 | 20 | U |
| 962 | 139.0085 | 20-FEB-1990 | nrpc | 20 | 2 | 117 na | 228.5 | 164.7 | 53.2 | 40 | 60 | 10 | 20 | U |
| 963 | 224.0094 | 26-NOV-2003 | upct | 40 | 2 | 57 na | 946.8 | 943.1 | 53.3 | 40 | 80 | 0 | 40 | U |
| 964 | 239.0483 | 19-APR-2002 | winn | 20 | 2 | 70 na | 659.0 | 642.5 | 53.5 | 40 | 60 | 0 | 20 | U |
| 965 | 036.0671 | 19-JAN-2006 | mdct | 40 | 2 | 58 na | 974.6 | 970.5 | 53.9 | 40 | 80 | 0 | 20 | U |
| 966 | 183.0520 | 12-OCT-1997 | lamp | 20 | 2 | 75 na | 168.0 | 147.0 | 54.0 | 40 | 60 | 0 | 20 | U |
| 967 | 143.0799 | 10-MAR-2004 | upmk | 20 | 2 | 62 na | 402.0 | 394.0 | 54.0 | 40 | 60 | 0 | 20 | u |
| 968 | 172.0311 | 10-DEC-2002 | pemi | 40 | 2 | 66 na | 549.1 | 537.9 | 54.8 | 40 | 80 | 0 | 40 | U |
| 969 | 051.0406 | 12-NOV-1998 | cont | 40 | 2 | 65 na | 348.0 | 338.0 | 55.0 | 40 | 80 | 0 | 40 | U |
| 970 | 177.0242 | 02-JUN-2003 | Iwct | 40 | 2 | 60 na | 792.0 | 787.0 | 55.0 | 40 | 80 | 0 | 40 | U |
| 971 | 005.0336 | 01-NOV-2005 | Iwct | 40 | 2 | 58 na | 453.4 | 450.8 | 55.4 | 40 | 80 | 0 | 40 | U |
| 972 | 119.0524 | 13-SEP-1993 | nrpc | 20 | 2 | 79 na | 297.0 | 273.5 | 55.5 | 40 | 60 | 20 | 40 | u |
| 973 | 036.0583 | 12-JAN-2004 | mdct | 40 | 2 | 59 na | 908.0 | 905.0 | 56.0 | 40 | 80 | 0 | 20 | u |
| 974 | 140.0353 | 20-AUG-2004 | mdct | 40 | 2 | 75 na | 865.0 | 846.0 | 56.0 | 40 | 80 | 0 | 40 | $u$ |
| 975 | 051.0725 | 25-JUN-2004 | cont | 40 | 2 | 60 na | 344.0 | 340.0 | 56.0 | 40 | 80 | 0 | 40 | U |
| 976 | 174.0334 | 14-SEP-1998 | mdmk | 20 | 2 | 79 na | 1053.1 | 1030.7 | 56.6 | 40 | 60 | 0 | 20 | u |
| 977 | 239.0105 | 16-SEP-1987 | winn | 20 | 2 | 60 na | 563.3 | 560.0 | 56.7 | 40 | 60 | 0 | 20 | U |
| 978 | 107.0149 | 25-OCT-2000 | cont | 40 | 2 | 66 na | 739.0 | 729.8 | 56.8 | 40 | 80 | 0 | 40 | u |
| 979 | 041.0273 | 14-APR-2005 | Iwct | 40 | 2 | 75 na | 315.0 | 296.9 | 56.9 | 40 | 80 | 0 | 40 | U |
| 980 | 256.1674 | 29-APR-2002 | Immk | 20 | 2 | 65 na | 185.0 | 177.0 | 57.0 | 40 | 60 | 20 | 40 | U |
| 981 | 154.0187 | 24-JUL-2003 | mdmk | 20 | 2 | 65 na | 612.0 | 604.0 | 57.0 | 40 | 60 | 0 | 20 | U |
| 982 | 236.0376 | 28-MAY-2004 | pemi | 40 | 2 | 108 na | 628.8 | 577.9 | 57.1 | 40 | 80 | 0 | 40 | U |
| 983 | 170.0443 | 26-JUN-2003 | winn | 20 | 2 | 70 na | 661.6 | 648.9 | 57.3 | 40 | 60 | 0 | 20 | U |
| 984 | 090.0788 | 30-APR-2004 | winn | 20 | 2 | 105 na | 732.6 | 685.5 | 57.9 | 40 | 60 | 0 | 20 | U |
| 985 | 119.1178 | 27-AUG-2003 | nrpc | 20 | 2 | 62 na | 202.0 | 198.0 | 58.0 | 40 | 60 | 20 | 40 | U |
| 986 | 167.1015 | 21-MAY-2004 | mdmk | 20 | 2 | 68 na | 550.0 | 540.0 | 58.0 | 40 | 60 | 20 | 40 | U |
| 987 | 256.1872 | 04-JAN-2005 | Immk | 20 | 2 | 60 na | 159.6 | 157.6 | 58.0 | 40 | 60 | 20 | 40 | U |
| 988 | 127.0360 | 20-NOV-2002 | Immk | 20 | 2 | 60 na | 139.2 | 137.3 | 58.1 | 40 | 60 | 0 | 20 | U |
| 989 | 232.0776 | 16-AUG-2005 | Iwct | 40 | 2 | 76 na | 477.4 | 459.5 | 58.1 | 40 | 80 | 0 | 40 | U |
| 990 | 005.0347 | 05-APR-2006 | lwct | 40 | 2 | 63 na | 479.6 | 475.2 | 58.6 | 40 | 80 | 0 | 40 | u |
| 991 | 053.0268 | 15-OCT-2005 | Iwct | 40 | 2 | 63 na | 842.6 | 838.3 | 58.7 | 40 | 80 | 0 | 40 | U |
| 992 | 162.0122 | 15-FEB-2006 | mdct | 40 | 2 | 82 na | 605.0 | 581.8 | 58.8 | 40 | 80 | 0 | 40 | U |
| 993 | 107.0125 | 08-MAY-1998 | cont | 40 | 2 | 78 na | 726.2 | 707.1 | 58.9 | 40 | 80 | 0 | 40 | $u$ |
| 994 | 033.0264 | 09-NOV-1990 | nrpc | 20 | 2 | 75 na | 295.3 | 280.0 | 59.7 | 40 | 60 | 10 | 20 | u |
| 995 | 086.0191 | 24-SEP-2003 | mdct | 40 | 2 | 65 na | 988.0 | 982.7 | 59.7 | 40 | 80 | 0 | 40 | U |
| 996 | 188.1523 | 16-DEC-2003 | nrpc | 20 | 2 | 80 na | 173.5 | 153.3 | 59.8 | 40 | 60 | 0 | 10 | u |
| 997 | 088.0383 | 08-APR-2004 | saco | 40 | 2 | 84 na | 441.0 | 416.9 | 59.9 | 40 | 80 | 0 | 40 | u |
| 998 | 119.0298 | 18-MAY-1988 | nrpc | 20 | 2 | 67 na | 277.0 | 270.0 | 60.0 | 60 | 80 | 40 | 60 | U |
| 999 | 134.0415 | 28-JUN-2004 | mdct | 40 | 2 | 63 na | 705.9 | 702.9 | 60.0 | 40 | 80 | 0 | 20 | U |
| 1000 | 052.0604 | 09-MAY-2003 | saco | 40 | 2 | 80 na | 463.7 | 444.6 | 60.9 | 40 | 80 | 0 | 40 | u |


|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=$ Overclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | Depth (ft bgs) |  | Interp <br> (ft <br> Land | polated <br> msl) <br> Water | $\begin{aligned} & \text { Satur } \\ & \text { Calc } \end{aligned}$ | rated Act Cla | Thic tual ass | nness <br> Map <br> Cla | (ft) <br> ped ass |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 1001 | 003.0276 | 19-MAY-2004 | pemi | 40 | 2 | 85 | na | 504.6 | 481.0 | 61.4 | 40 | 80 | 0 | 40 | U |
| 1002 | 241.0778 | 16-JUL-2004 | saco | 40 | 2 | 81 | na | 577.4 | 558.0 | 61.6 | 40 | 80 | 0 | 40 | U |
| 1003 | 159.0985 | 06-OCT-2005 | nrpc | 20 | 2 | 65 | na | 480.0 | 476.6 | 61.6 | 60 | 80 | 0 | 10 | U |
| 1004 | 256.1236 | 12-NOV-1999 | Iwmk | 20 | 2 | 70 | na | 215.4 | 207.3 | 61.9 | 60 | 80 | 0 | 20 | U |
| 1005 | 031.0262 | 09-MAY-2005 | pemi | 40 | 2 | 80 | na | 488.1 | 470.0 | 61.9 | 40 | 80 | 0 | 40 | U |
| 1006 | 188.0461 | 06-MAY-1993 | nrpc | 20 | 2 | 70 | na | 144.4 | 136.9 | 62.5 | 60 | 80 | 20 | 40 | U |
| 1007 | 203.0587 | 20-AUG-2003 | coch | 20 | 2 | 86 | na | 142.1 | 118.6 | 62.5 | 60 | 80 | 40 | 60 | U |
| 1008 | 115.0102 | 19-AUG-2004 | pemi | 40 | 2 | 75 | na | 515.3 | 502.8 | 62.5 | 40 | 80 | 0 | 40 | U |
| 1009 | 172.0319 | 28-AUG-2002 | pemi | 40 | 2 | 70 | na | 516.5 | 509.3 | 62.8 | 40 | 80 | 0 | 40 | U |
| 1010 | 159.0453 | 17-DEC-1996 | nrpc | 20 | 2 | 77 | na | 302.0 | 288.0 | 63.0 | 60 | 80 | 0 | 10 | U |
| 1011 | 211.0574 | 10-FEB-1999 | lamp | 20 | 2 | 72 | na | 240.0 | 231.0 | 63.0 | 60 | 80 | 0 | 20 | U |
| 1012 | 092.0083 | 18-SEP-1998 | Iwct | 40 | 2 | 86 | na | 743.5 | 721.0 | 63.5 | 40 | 80 | 0 | 40 | U |
| 1013 | 123.0173 | 07-AUG-2001 | saco | 40 | 2 | 80 | na | 778.0 | 761.5 | 63.5 | 40 | 80 | 0 | 40 | U |
| 1014 | 209.0205 | 06-OCT-2003 | cont | 40 | 2 | 89 | na | 585.0 | 560.0 | 64.0 | 40 | 80 | 0 | 40 | U |
| 1015 | 057.0181 | 18-OCT-2005 | mdct | 40 | 2 | 67 | na | 899.0 | 896.0 | 64.0 | 40 | 80 | 0 | 40 | U |
| 1016 | 119.1327 | 27-FEB-2006 | nrpc | 20 | 2 | 85 | na | 193.9 | 172.9 | 64.0 | 60 | 80 | 10 | 20 | U |
| 1017 | 230.0075 | 05-AUG-2002 | Iwct | 40 | 2 | 68 | na | 567.6 | 564.3 | 64.7 | 40 | 80 | 0 | 40 | U |
| 1018 | 225.1029 | 24-JUL-2006 | lamp | 20 | 2 | 83 | na | 122.7 | 104.5 | 64.8 | 60 | 80 | 0 | 20 | U |
| 1019 | 052.0711 | 27-AUG-2005 | saco | 40 | 2 | 70 | na | 438.2 | 433.1 | 64.9 | 40 | 80 | 0 | 40 | U |
| 1020 | 035.0030 | 17-DEC-1986 | pemi | 40 | 2 | 105 | na | 640.0 | 600.0 | 65.0 | 40 | 80 | 0 | 40 | U |
| 1021 | 139.0211 | 06-FEB-1996 | nrpc | 20 | 2 | 85 | na | 190.0 | 171.0 | 66.0 | 60 | 80 | 40 | 60 | U |
| 1022 | 029.0777 | 09-SEP-2005 | lamp | 20 | 2 | 68 | na | 136.0 | 134.0 | 66.0 | 60 | 80 | 20 | 40 | U |
| 1023 | 188.0380 | 13-MAY-1991 | nrpc | 20 | 2 | 85 | na | 148.6 | 130.0 | 66.4 | 60 | 80 | 40 | 60 | U |
| 1024 | 159.0963 | 27-AUG-2005 | nrpc | 20 | 2 | 77 | na | 259.5 | 248.9 | 66.4 | 60 | 80 | 0 | 10 | U |
| 1025 | 187.0462 | 13-DEC-1999 | saco | 40 | 2 | 80 | na | 693.1 | 680.0 | 66.9 | 40 | 80 | 0 | 40 | U |
| 1026 | 020.2354 | 11-MAY-2001 | mdmk | 20 | 2 | 78 | na | 232.0 | 221.0 | 67.0 | 60 | 80 | 20 | 40 | U |
| 1027 | 248.0260 | 20-MAY-2003 | cont | 40 | 2 | 82 | na | 378.0 | 363.0 | 67.0 | 40 | 80 | 0 | 40 | U |
| 1028 | 149.0574 | 01-JUN-2006 | saco | 40 | 2 | 90 | na | 551.0 | 528.1 | 67.1 | 40 | 80 | 0 | 40 | U |
| 1029 | 086.0246 | 09-SEP-2005 | mdct | 40 | 2 | 116 | na | 1188.5 | 1140.0 | 67.5 | 40 | 80 | 0 | 40 | U |
| 1030 | 221.0136 | 30-JUL-2005 | upct | 40 | 2 | 112 | na | 1244.7 | 1200.6 | 67.9 | 40 | 80 | 0 | 40 | U |
| 1031 | 006.1498 | 16-NOV-2005 | winn | 20 | 2 | 70 | na | 538.9 | 537.2 | 68.3 | 60 | 80 | 20 | 40 | U |
| 1032 | 139.0388 | 16-APR-2003 | nrpc | 20 | 2 | 76 | na | 187.5 | 180.0 | 68.5 | 60 | 80 | 20 | 40 | U |
| 1033 | 188.0572 | 21-FEB-1994 | nrpc | 20 | 2 | 70 | na | 159.0 | 157.8 | 68.8 | 60 | 80 | 0 | 10 | U |
| 1034 | 026.0178 | 05-APR-2006 | upmk | 20 | 2 | 78 | na | 291.0 | 282.0 | 69.0 | 60 | 80 | 20 | 40 | U |
| 1035 | 121.0507 | 15-OCT-2001 | cont | 40 | 2 | 80 | na | 398.0 | 387.3 | 69.3 | 40 | 80 | 0 | 40 | U |
| 1036 | 025.0250 | 03-SEP-2002 | mdct | 40 | 2 | 71 | na | 1011.4 | 1009.7 | 69.3 | 40 | 80 | 0 | 40 | U |
| 1037 | 203.0103 | 26-OCT-2001 | coch | 20 | 2 | 90 | na | 225.0 | 205.2 | 70.2 | 60 | 80 | 40 | 60 | U |
| 1038 | 087.0242 | 10-APR-2006 | upmk | 20 | 2 | 104 | na | 364.9 | 331.6 | 70.7 | 60 | 80 | 0 | 20 | U |
| 1039 | 063.1862 | 04-OCT-2005 | Iwmk | 20 | 2 | 87 | na | 278.0 | 262.0 | 71.0 | 60 | 80 | 0 | 20 | U |
| 1040 | 168.0508 | 13-JUL-2004 | cont | 40 | 2 | 78 | na | 738.0 | 731.3 | 71.3 | 40 | 80 | 0 | 40 | U |
| 1041 | 221.0142 | 17-NOV-2005 | upct | 40 | 2 | 76 | na | 1084.3 | 1080.0 | 71.7 | 40 | 80 | 0 | 40 | U |
| 1042 | 212.0026 | 21-SEP-1986 | saco | 40 | 2 | 84 |  | 617.9 | 606.0 | 72.1 | 40 | 80 | 0 | 40 | U |
| 1043 | 098.0201 | 26-JUL-2004 | cont | 40 | 2 | 86 | na | 691.0 | 678.0 | 73.0 | 40 | 80 | 0 | 40 | U |
| 1044 | 004.0180 | 01-SEP-1998 | upmk | 20 | 2 | 75 | na | 289.0 | 287.3 | 73.3 | 60 | 80 | 40 | 60 | U |
| 1045 | 159.0172 | 17-FEB-1989 | nrpc | 20 | 2 | 102 |  | 320.0 | 291.5 | 73.5 | 60 | 80 | 20 | 40 | U |
| 1046 | 035.0379 | 17-MAY-2004 | pemi | 40 | 2 | 89 |  | 669.3 | 654.1 | 73.8 | 40 | 80 | 0 | 40 | U |
| 1047 | 172.0393 | 12-AUG-2005 | pemi | 40 | 2 | 95 |  | 571.3 | 550.1 | 73.8 | 40 | 80 | 0 | 40 | U |
| 1048 | 015.1126 | 17-FEB-2004 | coch | 20 | 2 | 76 |  | 150.0 | 148.0 | 74.0 | 60 | 80 | 20 | 40 | U |
| 1049 | 138.0202 | 07-JUN-2004 | mdct | 40 | 2 | 130 | na | 795.4 | 740.0 | 74.6 | 40 | 80 | 0 | 20 | U |
| 1050 | 099.0456 | 25-MAY-2004 | Iwmk | 20 | 2 | 105 | na | 93.0 | 62.7 | 74.7 | 60 | 80 | 20 | 40 | U |


|  | Cha |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=$ Overclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | Depth (ft bgs) |  | Interp <br> (ft <br> Land | polated <br> msl) <br> Water | $\begin{aligned} & \text { Satur } \\ & \text { Calc } \end{aligned}$ | rated Act Cla | Thic <br> tual <br> ass | knes <br> Map Cla | (ft) <br> ped ass |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 1051 | 121.0514 | 21-OCT-2002 | cont | 40 | 2 | 98 | na | 370.0 | 346.8 | 74.8 | 40 | 80 | 0 | 40 | U |
| 1052 | 232.0713 | 26-OCT-2002 | Iwct | 40 | 2 | 80 | na | 556.2 | 551.0 | 74.8 | 40 | 80 | 0 | 40 | U |
| 1053 | 051.0689 | 05-MAY-2004 | cont | 40 | 2 | 80 | na | 355.0 | 350.0 | 75.0 | 40 | 80 | 0 | 40 | U |
| 1054 | 220.0084 | 10-AUG-2004 | upct | 40 | 2 | 76 | na | 958.4 | 957.4 | 75.0 | 40 | 80 | 0 | 40 | U |
| 1055 | 178.0696 | 11-JUL-2005 | Iwmk | 20 | 2 | 90 | na | 132.0 | 117.0 | 75.0 | 60 | 80 | 40 | 60 | U |
| 1056 | 129.0854 | 13-DEC-2002 | lwmk | 20 | 2 | 84 | na | 128.0 | 120.0 | 76.0 | 60 | 80 | 20 | 40 | U |
| 1057 | 254.0317 | 03-FEB-2004 | nrpc | 20 | 2 | 116 | na | 600.0 | 560.0 | 76.0 | 60 | 80 | 0 | 10 | U |
| 1058 | 108.0461 | 12-JAN-2005 | mdct | 40 | 2 | 127 | na | 521.0 | 470.0 | 76.0 | 40 | 80 | 0 | 40 | U |
| 1059 | 159.0966 | 17-NOV-2005 | nrpc | 20 | 2 | 78 | na | 262.0 | 260.0 | 76.0 | 60 | 80 | 10 | 20 | U |
| 1060 | 256.0914 | 12-OCT-1995 | lwmk | 20 | 2 | 79 | na | 182.0 | 180.0 | 77.0 | 60 | 80 | 0 | 20 | U |
| 1061 | 165.0171 | 03-JUN-2003 | nrpc | 20 | 2 | 88 | na | 200.0 | 189.0 | 77.0 | 60 | 80 | 10 | 20 | U |
| 1062 | 203.0649 | 06-JUL-2004 | coch | 20 | 2 | 95 | na | 238.0 | 220.0 | 77.0 | 60 | 80 | 40 | 60 | U |
| 1063 | 214.0035 | 28-APR-2003 | Iwmk | 20 | 2 | 100 | na | 79.5 | 56.7 | 77.2 | 60 | 80 | 0 | 20 | U |
| 1064 | 025.0325 | 19-OCT-2005 | mdct | 40 | 2 | 97 | na | 1063.0 | 1043.3 | 77.3 | 40 | 80 | 0 | 40 | U |
| 1065 | 016.0368 | 03-MAR-2005 | saco | 40 | 2 | 86 | na | 666.7 | 658.2 | 77.5 | 40 | 80 | 0 | 40 | U |
| 1066 | 030.0181 | 25-FEB-2002 | pemi | 40 | 2 | 111 | na | 530.0 | 496.8 | 77.8 | 40 | 80 | 0 | 40 | U |
| 1067 | 051.0776 | 04-APR-2005 | upmk | 20 | 2 | 79 | na | 329.0 | 327.8 | 77.8 | 60 | 80 | 0 | 20 | U |
| 1068 | 113.0197 | 23-APR-2004 | pemi | 40 | 2 | 85 | na | 607.1 | 600.0 | 77.9 | 40 | 80 | 0 | 40 | U |
| 1069 | 091.0652 | 21-JUN-2002 | upmk | 20 | 2 | 82 | na | 627.0 | 623.0 | 78.0 | 60 | 80 | 40 | 60 | U |
| 1070 | 038.0458 | 17-JUN-2006 | upmk | 20 | 2 | 110 | na | 375.0 | 343.0 | 78.0 | 60 | 80 | 20 | 40 | U |
| 1071 | 104.0920 | 01-OCT-2001 | lwmk | 20 | 2 | 90 | na | 249.0 | 238.0 | 79.0 | 60 | 80 | 0 | 20 | U |
| 1072 | 237.0223 | 10-MAY-2005 | winn | 20 | 2 | 87 | na | 489.5 | 482.0 | 79.5 | 60 | 80 | 0 | 20 | U |
| 1073 | 178.0695 | 12-JUL-2005 | lwmk | 20 | 2 | 90 | na | 121.4 | 111.0 | 79.6 | 60 | 80 | 20 | 40 | U |
| 1074 | 199.0115 | 05-OCT-2001 | upct | 40 | 2 | 87 | na | 1503.3 | 1496.0 | 79.7 | 40 | 80 | 0 | 40 | U |
| 1075 | 143.0681 | 07-DEC-2001 | upmk | 20 | 2 | 90 | na | 390.0 | 380.0 | 80.0 | 80 | 100 | 0 | 20 | U |
| 1076 | 105.0192 | 13-MAY-2003 | lwmk | 20 | 2 | 90 | na | 29.5 | 19.7 | 80.2 | 80 | 100 | 0 | 20 | U |
| 1077 | 237.0224 | 05-APR-2005 | winn | 20 | 2 | 100 | na | 505.0 | 485.4 | 80.4 | 80 | 100 | 60 | 80 | U |
| 1078 | 256.0742 | 25-MAR-1994 | lwmk | 20 | 2 | 94 | na | 173.0 | 160.0 | 81.0 | 80 | 100 | 40 | 60 | U |
| 1079 | 122.0506 | 09-APR-1992 | nrpc | 20 | 2 | 91 | na | 145.0 | 135.4 | 81.4 | 80 | 100 | 10 | 20 | U |
| 1080 | 086.0247 | 11-OCT-2005 | mdct | 40 | 2 | 95 | na | 1013.4 | 1000.0 | 81.6 | 80 | 120 | 0 | 40 | U |
| 1081 | 016.0354 | 29-OCT-2004 | saco | 40 | 2 | 85 | na | 599.1 | 595.8 | 81.7 | 80 | 120 | 40 | 80 | U |
| 1082 | 156.0357 | 21-APR-1993 | nrpc | 20 | 2 | 108 | na | 200.0 | 173.8 | 81.8 | 80 | 100 | 40 | 60 | U |
| 1083 | 117.0174 | 17-SEP-2001 | lwct | 40 | 2 | 87 | na | 188.5 | 183.5 | 82.0 | 80 | 120 | 40 | 80 | U |
| 1084 | 016.0344 | 08-MAR-2004 | saco | 40 | 2 | 130 | na | 540.0 | 492.6 | 82.6 | 80 | 120 | 40 | 80 | U |
| 1085 | 159.0246 | 09-JUL-1991 | nrpc | 20 | 2 | 119 | na | 312.0 | 276.5 | 83.5 | 80 | 100 | 40 | 60 | U |
| 1086 | 035.0456 | 15-SEP-2005 | pemi | 40 | 2 | 100 | na | 770.8 | 754.6 | 83.8 | 80 | 120 | 0 | 40 | U |
| 1087 | 233.0413 | 27-JUN-2002 | saco | 40 | 2 | 112 | na | 466.1 | 438.1 | 84.0 | 80 | 120 | 0 | 40 | U |
| 1088 | 149.0393 | 19-MAY-1999 | saco | 40 | 2 | 90 | na | 476.1 | 471.9 | 85.8 | 80 | 120 | 40 | 80 | U |
| 1089 | 039.0093 | 06-MAY-2005 | mdct | 40 | 2 | 89 | na | 1402.5 | 1400.0 | 86.5 | 80 | 120 | 0 | 40 | U |
| 1090 | 039.0107 | 24-JUL-2006 | mdct | 40 | 2 | 90 | na | 1332.2 | 1328.8 | 86.6 | 80 | 120 | 0 | 40 | U |
| 1091 | 252.0253 | 10-NOV-2005 | mdct | 40 | 2 | 120 | na | 1063.0 | 1030.1 | 87.1 | 80 | 120 | 40 | 80 | U |
| 1092 | 142.2287 | 31-OCT-2005 | lwmk | 20 | 2 | 105 |  | 236.0 | 219.0 | 88.0 | 80 | 100 | 0 | 20 | U |
| 1093 | 181.0069 | 11-MAY-2006 | upct | 40 | 2 | 108 | na | 882.1 | 863.0 | 88.9 | 80 | 120 | 40 | 80 | U |
| 1094 | 052.0647 | 05-MAR-2004 | saco | 40 | 2 | 100 |  | 500.0 | 489.0 | 89.0 | 80 | 120 | 40 | 80 | U |
| 1095 | 003.0305 | 28-JUN-2006 | pemi | 40 | 2 | 115 | na | 625.4 | 599.5 | 89.1 | 80 | 120 | 0 | 40 | U |
| 1096 | 257.0033 | 15-DEC-2000 | cont | 40 | 2 | 125 |  | 1048.2 | 1012.5 | 89.3 | 80 | 120 | 0 | 40 | U |
| 1097 | 241.0846 | 02-MAY-2005 | saco | 40 | 2 | 91 |  | 585.2 | 584.0 | 89.8 | 80 | 120 | 0 | 40 | U |
| 1098 | 187.0066 | 08-APR-1986 | saco | 40 | 2 | 115 |  | 510.0 | 485.0 | 90.0 | 80 | 120 | 40 | 80 | U |
| 1099 | 073.0065 | 26-MAY-2005 | mdct | 40 | 2 | 110 | na | 1080.0 | 1060.0 | 90.0 | 80 | 120 | 0 | 40 | U |
| 1100 | 187.0570 | 02-MAY-2003 | saco | 40 | 2 | 146 | na | 470.0 | 415.1 | 91.1 | 80 | 120 | 40 | 80 | U |


|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type O=Overclassed C= Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | $\begin{array}{r} \text { Depth } \\ \text { (ft bgs) } \\ \hline \end{array}$ |  | Interp (ft Land | polated $\mathrm{msl})$ \| Water | Satu <br> Calc | rated Act Cla | Thic tual ass | knes <br> Map <br> Cla | $\begin{aligned} & \text { s (ft) } \\ & \text { oped } \\ & \text { ass } \end{aligned}$ |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 1101 | 191.0164 | 23-NOV-2005 | mdct | 40 | 2 | 115 | na | 553.5 | 530.0 | 91.5 | 80 | 120 | 0 | 40 | U |
| 1102 | 112.0303 | 02-SEP-2003 | mdct | 40 | 2 | 105 | na | 790.0 | 776.9 | 91.9 | 80 | 120 | 0 | 20 | U |
| 1103 | 210.0539 | 04-JUN-2003 | winn | 20 | 2 | 95 | na | 485.0 | 482.0 | 92.0 | 80 | 100 | 0 | 20 | U |
| 1104 | 224.0106 | 11-MAY-2006 | upct | 40 | 2 | 112 | na | 980.0 | 960.0 | 92.0 | 80 | 120 | 0 | 40 | U |
| 1105 | 051.0392 | 25-JUL-1998 | upmk | 20 | 2 | 130 | na | 297.5 | 260.0 | 92.5 | 80 | 100 | 20 | 40 | U |
| 1106 | 236.0388 | 19-AUG-2004 | pemi | 40 | 2 | 100 | na | 644.4 | 637.0 | 92.6 | 80 | 120 | 0 | 40 | U |
| 1107 | 164.1563 | 11-AUG-2005 | winn | 20 | 2 | 106 | na | 517.3 | 504.0 | 92.7 | 80 | 100 | 0 | 20 | U |
| 1108 | 149.0541 | 09-AUG-2005 | saco | 40 | 2 | 95 | na | 470.0 | 468.0 | 93.0 | 80 | 120 | 40 | 80 | U |
| 1109 | 188.0791 | 23-MAR-1998 | nrpc | 20 | 2 | 95 | na | 154.0 | 152.5 | 93.5 | 80 | 100 | 0 | 10 | U |
| 1110 | 036.0602 | 23-SEP-2004 | mdct | 40 | 2 | 108 | na | 998.3 | 984.0 | 93.7 | 80 | 120 | 0 | 20 | U |
| 1111 | 051.0592 | 11-JUL-2000 | upmk | 20 | 2 | 101 | na | 235.0 | 228.0 | 94.0 | 80 | 100 | 40 | 60 | U |
| 1112 | 002.0127 | 23-OCT-2003 | saco | 40 | 2 | 100 | na | 463.0 | 457.0 | 94.0 | 80 | 120 | 40 | 80 | U |
| 1113 | 232.0672 | 26-JUL-2002 | Iwct | 40 | 2 | 96 | na | 492.1 | 490.5 | 94.4 | 80 | 120 | 40 | 80 | U |
| 1114 | 121.0512 | 01-JUL-2002 | cont | 40 | 2 | 118 | na | 375.0 | 352.0 | 95.0 | 80 | 120 | 40 | 80 | U |
| 1115 | 233.0543 | 10-APR-2006 | saco | 40 | 2 | 135 | na | 483.1 | 443.2 | 95.1 | 80 | 120 | 40 | 80 | U |
| 1116 | 045.0478 | 01-OCT-1998 | Iwct | 40 | 2 | 115 | na | 384.8 | 365.3 | 95.5 | 80 | 120 | 40 | 80 | U |
| 1117 | 050.0167 | 15-MAY-2006 | upct | 40 | 2 | 125 | na | 1020.0 | 990.9 | 95.9 | 80 | 120 | 40 | 80 | U |
| 1118 | 172.0402 | 11-JAN-2006 | pemi | 40 | 2 | 119 | na | 523.0 | 500.0 | 96.0 | 80 | 120 | 40 | 80 | U |
| 1119 | 047.0144 | 09-NOV-1999 | Iwct | 40 | 2 | 108 | na | 562.3 | 551.0 | 96.7 | 80 | 120 | 40 | 80 | U |
| 1120 | 052.0457 | 25-NOV-1998 | saco | 40 | 2 | 115 | na | 506.5 | 489.0 | 97.5 | 80 | 120 | 40 | 80 | U |
| 1121 | 197.0276 | 27-JUL-2005 | pemi | 40 | 2 | 145 | na | 520.0 | 473.1 | 98.1 | 80 | 120 | 0 | 40 | U |
| 1122 | 003.0277 | 21-MAR-2005 | pemi | 40 | 2 | 108 | na | 524.1 | 514.9 | 98.8 | 80 | 120 | 0 | 40 | U |
| 1123 | 232.0663 | 19-JUN-2002 | Iwct | 40 | 2 | 106 | na | 490.0 | 482.9 | 98.9 | 80 | 120 | 40 | 80 | U |
| 1124 | 114.0514 | 05-APR-2006 | cont | 40 | 2 | 119 | na | 454.1 | 434.3 | 99.2 | 80 | 120 | 0 | 40 | U |
| 1125 | 014.0483 | 22-DEC-2003 | upmk | 20 | 2 | 106 | na | 538.0 | 531.4 | 99.4 | 80 | 100 | 0 | 20 | U |
| 1126 | 073.0040 | 11-DEC-2001 | mdct | 40 | 2 | 102 | na | 1248.0 | 1245.7 | 99.7 | 80 | 120 | 0 | 40 | U |
| 1127 | 021.0745 | 30-JUN-2005 | winn | 20 | 2 | 110 | na | 475.0 | 465.0 | 100.0 | 100 | 120 | 80 | 100 | U |
| 1128 | 008.0262 | 25-JAN-2002 | cont | 40 | 2 | 120 | na | 620.0 | 601.0 | 101.0 | 80 | 120 | 0 | 40 | U |
| 1129 | 134.0414 | 25-JUN-2004 | mdct | 40 | 2 | 112 | na | 768.0 | 757.3 | 101.3 | 80 | 120 | 40 | 80 | U |
| 1130 | 206.0247 | 12-MAY-2004 | pemi | 40 | 2 | 130 | na | 560.0 | 531.4 | 101.4 | 80 | 120 | 0 | 40 | U |
| 1131 | 016.0242 | 03-NOV-1998 | saco | 40 | 2 | 105 | na | 709.7 | 706.3 | 101.6 | 80 | 120 | 40 | 80 | U |
| 1132 | 108.0395 | 23-AUG-2001 | mdct | 40 | 2 | 130 | na | 500.0 | 472.0 | 102.0 | 80 | 120 | 0 | 40 | U |
| 1133 | 115.0090 | 01-OCT-2003 | pemi | 40 | 2 | 150 | na | 410.6 | 362.7 | 102.1 | 80 | 120 | 0 | 40 | U |
| 1134 | 254.0365 | 24-MAR-2006 | nrpc | 20 | 2 | 120 | na | 687.0 | 670.0 | 103.0 | 100 | 120 | 0 | 10 | U |
| 1135 | 159.0159 | 21-OCT-1988 | nrpc | 20 | 2 | 111 | na | 275.0 | 268.1 | 104.1 | 100 | 120 | 10 | 20 | U |
| 1136 | 146.0249 | 13-AUG-2002 | mdct | 40 | 2 | 117 | na | 398.7 | 387.5 | 105.8 | 80 | 120 | 20 | 40 | U |
| 1137 | 075.0201 | 24-APR-2003 | saco | 40 | 2 | 108 | na | 416.0 | 414.0 | 106.0 | 80 | 120 | 0 | 40 | U |
| 1138 | 118.0405 | 13-JAN-2005 | pemi | 40 | 2 | 110 | na | 583.7 | 580.0 | 106.3 | 80 | 120 | 0 | 40 | U |
| 1139 | 052.0533 | 05-MAR-2001 | saco | 40 | 2 | 140 | na | 473.0 | 440.0 | 107.0 | 80 | 120 | 0 | 40 | U |
| 1140 | 241.0881 | 02-AUG-2005 | saco | 40 | 2 | 120 | na | 570.0 | 558.0 | 108.0 | 80 | 120 | 40 | 80 | U |
| 1141 | 143.0852 | 28-JUL-2005 | upmk | 20 | 2 | 125 | na | 360.0 | 346.3 | 111.3 | 100 | 120 | 40 | 60 | U |
| 1142 | 112.0328 | 10-AUG-2004 | mdct | 40 | 2 | 132 | na | 743.6 | 723.3 | 111.7 | 80 | 120 | 40 | 80 | U |
| 1143 | 098.0206 | 15-SEP-2004 | cont | 40 | 2 | 155 | na | 841.0 | 798.0 | 112.0 | 80 | 120 | 0 | 40 | U |
| 1144 | 242.0298 | 19-MAY-2003 | Iwct | 40 | 2 | 145 | na | 474.4 | 442.0 | 112.6 | 80 | 120 | 0 | 40 | U |
| 1145 | 020.2576 | 06-AUG-2005 | mdmk | 20 | 2 | 130 | na | 238.0 | 221.0 | 113.0 | 100 | 120 | 40 | 60 | U |
| 1146 | 004.0186 | 15-JAN-2002 | upmk | 20 | 2 | 120 | na | 303.0 | 296.8 | 113.8 | 100 | 120 | 40 | 60 | U |
| 1147 | 098.0228 | 28-DEC-2005 | cont | 40 | 2 | 130 | na | 858.0 | 842.0 | 114.0 | 80 | 120 | 40 | 80 | U |
| 1148 | 025.0313 | 16-MAY-2005 | mdct | 40 | 2 | 118 | na | 1160.0 | 1156.9 | 114.9 | 80 | 120 | 0 | 20 | U |
| 1149 | 086.0201 | 29-SEP-2003 | mdct | 40 | 2 | 118 |  | 942.0 | 939.5 | 115.5 | 80 | 120 | 0 | 40 | U |
| 1150 | 021.0768 | 07-OCT-2005 | winn | 20 | 2 | 120 | na | 486.0 | 482.0 | 116.0 | 100 | 120 | 60 | 80 | U |


|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type O=Overclassed C= Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | $\begin{array}{r} \text { Depth } \\ \text { (ft bgs) } \\ \hline \end{array}$ |  | Interp (ft Land | polated $\mathrm{msl})$ \| Water | Satu <br> Calc | rated <br> Ac <br> Cl | Thic tual ass |  | $\begin{aligned} & \text { s (ft) } \\ & \text { oped } \\ & \text { ass } \end{aligned}$ |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 1151 | 253.0234 | 11-AUG-2003 | cont | 40 | 2 | 162 | na | 880.0 | 834.1 | 116.1 | 80 | 120 | 0 | 40 | U |
| 1152 | 236.0378 | 30-JUN-2004 | pemi | 40 | 2 | 126 | na | 767.5 | 760.0 | 118.5 | 80 | 120 | 0 | 40 | U |
| 1153 | 206.0214 | 13-MAY-2004 | pemi | 40 | 2 | 153 | na | 607.1 | 573.1 | 119.0 | 80 | 120 | 0 | 40 | U |
| 1154 | 091.0863 | 21-DEC-2005 | upmk | 20 | 2 | 145 | na | 650.0 | 625.0 | 120.0 | 120 | 140 | 100 | 120 | U |
| 1155 | 162.0115 | 22-JUN-2004 | mdct | 40 | 2 | 143 | na | 613.5 | 591.0 | 120.5 | 120 | 160 | 40 | 80 | U |
| 1156 | 256.1689 | 23-DEC-2002 | lwmk | 20 | 2 | 130 | na | 165.0 | 155.6 | 120.6 | 120 | 140 | 40 | 60 | U |
| 1157 | 161.0436 | 27-JUL-2004 | coch | 20 | 2 | 130 | na | 422.0 | 413.0 | 121.0 | 120 | 140 | 80 | 100 | U |
| 1158 | 255.0227 | 07-JUL-2004 | Iwct | 40 | 2 | 126 | na | 447.0 | 442.9 | 121.9 | 120 | 160 | 0 | 40 | U |
| 1159 | 020.2497 | 22-MAR-2004 | mdmk | 20 | 2 | 126 | na | 215.0 | 211.0 | 122.0 | 120 | 140 | 20 | 40 | U |
| 1160 | 052.0745 | 06-JUN-2006 | saco | 40 | 2 | 129 | na | 410.0 | 403.6 | 122.6 | 120 | 160 | 80 | 120 | U |
| 1161 | 243.0437 | 09-MAY-2006 | cont | 40 | 2 | 138 | na | 411.0 | 397.0 | 124.0 | 120 | 160 | 0 | 40 | U |
| 1162 | 008.0298 | 07-APR-2005 | cont | 40 | 2 | 134 | na | 647.1 | 640.0 | 126.9 | 120 | 160 | 0 | 40 | U |
| 1163 | 036.0658 | 23-SEP-2005 | mdct | 40 | 2 | 130 | na | 807.0 | 804.0 | 127.0 | 120 | 160 | 40 | 80 | U |
| 1164 | 259.0109 | 17-MAY-2006 | pemi | 40 | 2 | 160 | na | 711.2 | 680.0 | 128.8 | 120 | 160 | 0 | 40 | U |
| 1165 | 021.0785 | 01-JUN-2006 | winn | 20 | 2 | 162 | na | 515.2 | 482.0 | 128.8 | 120 | 140 | 0 | 20 | U |
| 1166 | 112.0333 | 22-OCT-2004 | mdct | 40 | 2 | 140 | na | 760.7 | 750.6 | 129.9 | 120 | 160 | 40 | 80 | U |
| 1167 | 016.0343 | 04-MAR-2004 | saco | 40 | 2 | 140 | na | 580.0 | 572.0 | 132.0 | 120 | 160 | 0 | 40 | U |
| 1168 | 057.0180 | 14-OCT-2005 | mdct | 40 | 2 | 141 | na | 869.4 | 862.0 | 133.6 | 120 | 160 | 0 | 40 | U |
| 1169 | 212.0266 | 13-OCT-2001 | saco | 40 | 2 | 140 | na | 605.3 | 600.0 | 134.7 | 120 | 160 | 0 | 40 | U |
| 1170 | 186.0192 | 09-JUL-2004 | mdct | 40 | 2 | 162 | na | 420.0 | 393.1 | 135.1 | 120 | 160 | 0 | 40 | U |
| 1171 | 187.0131 | 16-JUL-1987 | saco | 40 | 2 | 162 | na | 435.1 | 408.3 | 135.2 | 120 | 160 | 40 | 80 | U |
| 1172 | 232.0625 | 26-SEP-2000 | Iwct | 40 | 2 | 139 | na | 479.4 | 476.7 | 136.3 | 120 | 160 | 40 | 80 | U |
| 1173 | 002.0113 | 25-MAY-2002 | saco | 40 | 2 | 140 | na | 634.3 | 631.1 | 136.8 | 120 | 160 | 40 | 80 | U |
| 1174 | 086.0181 | 29-MAY-2002 | mdct | 40 | 2 | 150 | na | 1073.7 | 1066.0 | 142.3 | 120 | 160 | 40 | 80 | U |
| 1175 | 082.0218 | 07-JUN-1999 | lamp | 20 | 2 | 150 | na | 41.0 | 36.5 | 145.5 | 140 | 160 | 100 | 120 | U |
| 1176 | 232.0744 | 17-AUG-2004 | Iwct | 40 | 2 | 153 | na | 488.8 | 481.3 | 145.5 | 120 | 160 | 40 | 80 | U |
| 1177 | 073.0049 | 03-JUL-2003 | mdct | 40 | 2 | 156 | na | 1274.7 | 1264.5 | 145.8 | 120 | 160 | 0 | 40 | U |
| 1178 | 008.0281 | 26-FEB-2004 | cont | 40 | 2 | 150 | na | 621.4 | 618.7 | 147.3 | 120 | 160 | 80 | 120 | U |
| 1179 | 051.0849 | 31-JUL-2006 | upmk | 20 | 2 | 157 | na | 362.0 | 355.2 | 150.2 | 140 | 160 | 20 | 40 | U |
| 1180 | 206.0210 | 13-MAY-2003 | pemi | 40 | 2 | 160 | na | 502.0 | 492.9 | 150.9 | 120 | 160 | 80 | 120 | U |
| 1181 | 112.0302 | 30-APR-2003 | mdct | 40 | 2 | 160 | na | 753.1 | 744.3 | 151.2 | 120 | 160 | 20 | 40 | U |
| 1182 | 177.0238 | 08-NOV-2002 | Iwct | 40 | 2 | 160 | na | 879.9 | 872.4 | 152.5 | 120 | 160 | 40 | 80 | U |
| 1183 | 162.0104 | 05-DEC-2001 | mdct | 40 | 2 | 157 | na | 610.0 | 608.1 | 155.1 | 120 | 160 | 0 | 40 | U |
| 1184 | 052.0651 | 04-MAY-2004 | saco | 40 | 2 | 165 | na | 482.0 | 473.3 | 156.3 | 120 | 160 | 80 | 120 | U |
| 1185 | 138.0153 | 15-MAY-2003 | mdct | 40 | 2 | 182 | na | 744.1 | 720.0 | 157.9 | 120 | 160 | 40 | 80 | U |
| 1186 | 210.0567 | 13-SEP-2004 | pemi | 40 | 2 | 200 | na | 400.0 | 360.0 | 160.0 | 160 | 200 | 0 | 40 | U |
| 1187 | 206.0215 | 26-MAY-2004 | pemi | 40 | 2 | 175 | na | 513.8 | 499.6 | 160.8 | 160 | 200 | 0 | 40 | U |
| 1188 | 206.0206 | 03-MAR-2003 | pemi | 40 | 2 | 178 | na | 530.0 | 518.0 | 166.0 | 160 | 200 | 80 | 120 | U |
| 1189 | 035.0360 | 18-SEP-2003 | pemi | 40 | 2 | 180 | na | 604.4 | 592.5 | 168.1 | 160 | 200 | 80 | 120 | U |
| 1190 | 232.0677 | 03-FEB-2003 | Iwct | 40 | 2 | 181 | na | 495.4 | 483.4 | 169.0 | 160 | 200 | 40 | 80 | U |
| 1191 | 241.0948 | 06-JUL-2006 | saco | 40 | 2 | 185 | na | 600.0 | 584.0 | 169.0 | 160 | 200 | 80 | 120 | U |
| 1192 | 193.0557 | 27-AUG-2004 | upct | 40 | 2 | 178 | na | 1578.1 | 1576.4 | 176.3 | 160 | 200 | 80 | 120 | U |
| 1193 | 206.0245 | 19-JAN-2006 | pemi | 40 | 2 | 178 | na | 497.6 | 496.6 | 177.0 | 160 | 200 | 80 | 120 | U |
| 1194 | 206.0222 | 09-NOV-2004 | pemi | 40 | 2 | 195 | na | 517.0 | 500.0 | 178.0 | 160 | 200 | 40 | 80 | U |
| 1195 | 112.0273 | 06-NOV-2001 | mdct | 40 | 2 | 185 | na | 419.4 | 414.4 | 180.0 | 160 | 200 | 0 | 40 | U |
| 1196 | 161.0378 | 26-NOV-2002 | coch | 20 | 2 | 191 | na | 421.0 | 413.0 | 183.0 | 180 | 200 | 120 | 140 | U |
| 1197 | 009.0242 | 19-AUG-2005 | cont | 40 | 2 | 200 | na | 642.0 | 630.0 | 188.0 | 160 | 200 | 0 | 40 | U |
| 1198 | 177.0282 | 21-APR-2005 | Iwct | 40 | 2 | 198 | na | 795.2 | 787.4 | 190.2 | 160 | 200 | 0 | 40 | U |
| 1199 | 025.0296 | 14-OCT-2004 | mdct | 40 | 2 | 220 |  | 1322.1 | 1299.0 | 196.9 | 160 | 200 | 0 | 20 | U |
| 1200 | 035.0425 | 20-APR-2005 | pemi | 40 | 2 | 230 | na | 570.3 | 552.3 | 212.0 | 200 | 240 | 120 | 160 | U |


|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=$ Overclassed $\mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | Depth <br> (ft bgs) |  | Interp (ft Land | polated $\mathrm{msl})$ Water | Satur <br> Calc | rated <br> Act <br> Cl | Thic tual ass | knes Map Cla | $\begin{aligned} & \mathrm{s}(\mathrm{ft}) \\ & \text { sped } \\ & \text { ass } \\ & \hline \end{aligned}$ |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 1201 | 107.0209 | 18-JAN-2006 | nrpc | 20 | 2 | 230 | na | 252.6 | 237.0 | 214.4 | 200 | 220 | 60 | 80 | U |
| 1202 | 002.0012 | 22-MAY-1989 | saco | 40 | 2 | 223 | na | 745.8 | 740.0 | 217.2 | 200 | 240 | 0 | 40 | U |
| 1203 | 149.0505 | 13-APR-2004 | saco | 40 | 2 | 235 | na | 480.0 | 467.0 | 222.0 | 200 | 240 | 120 | 160 | U |
| 1204 | 206.0232 | 18-MAY-2005 | pemi | 40 | 2 | 240 | na | 522.0 | 507.2 | 225.2 | 200 | 240 | 160 | 200 | U |
| 1205 | 098.0187 | 29-JUL-2003 | cont | 40 | 2 | 230 | na | 809.0 | 807.1 | 228.1 | 200 | 240 | 40 | 80 | U |
| 1206 | 186.0209 | 23-FEB-2006 | mdct | 40 | 2 | 245 | na | 424.7 | 416.3 | 236.6 | 200 | 240 | 120 | 160 | U |
| 1207 | 053.0169 | 18-JUN-1998 | lwct | 40 | 2 | 265 | na | 375.2 | 351.5 | 241.3 | 240 | 280 | 80 | 120 | U |
| 1208 | 116.0571 | 15-APR-2005 | cont | 40 | 2 | 250 | na | 770.0 | 764.0 | 244.0 | 240 | 280 | 0 | 40 | U |
| 1209 | 112.0377 | 27-JUL-2006 | mdct | 40 | 2 | 280 | na | 570.0 | 540.0 | 250.0 | 240 | 280 | 40 | 80 | U |
| 1210 | 119.0292 | 22-APR-1988 | nrpc | 20 | 3 | 28 | 8 | 211.6 | 182.0 | -21.6 | 0 | 10 | 10 | 20 | 0 |
| 1211 | 041.0071 | 20-SEP-1988 | Iwct | 40 | 3 | 26 | 10 | 315.0 | 286.8 | -18.2 | 0 | 40 | 40 | 80 | 0 |
| 1212 | 006.1167 | 13-MAY-2002 | winn | 20 | 3 | 55 | 10 | 562.0 | 538.5 | -13.5 | 0 | 20 | 20 | 40 | 0 |
| 1213 | 119.0475 | 02-SEP-1992 | nrpc | 20 | 3 | 35 | 21 | 208.0 | 190.0 | 3.0 | 0 | 10 | 10 | 20 | 0 |
| 1214 | 149.0516 | 06-JUL-2004 | saco | 40 | 3 | 150 | 30 | 534.2 | 510.9 | 6.7 | 0 | 40 | 40 | 80 | 0 |
| 1215 | 188.0344 | 22-MAY-1991 | nrpc | 20 | 3 | 20 | 10 | 135.0 | 134.4 | 9.4 | 0 | 10 | 10 | 20 | 0 |
| 1216 | 035.0301 | 07-JUN-2002 | pemi | 40 | 3 | 95 | 60 | 598.2 | 552.6 | 14.4 | 0 | 40 | 120 | 160 | 0 |
| 1217 | 232.0667 | 21-JAN-2002 | Iwct | 40 | 3 | 96 | 25 | 465.9 | 456.9 | 16.0 | 0 | 40 | 80 | 120 | 0 |
| 1218 | 093.1014 | 02-AUG-2001 | mdmk | 20 | 3 | 60 | 40 | 303.0 | 289.2 | 26.2 | 20 | 40 | 40 | 60 | 0 |
| 1219 | 232.0743 | 11-JAN-2002 | Iwct | 40 | 3 | 117 | 50 | 494.0 | 471.0 | 27.0 | 0 | 40 | 80 | 120 | 0 |
| 1220 | 149.0397 | 09-OCT-1999 | saco | 40 | 3 | 65 | 40 | 480.0 | 468.0 | 28.0 | 0 | 40 | 80 | 120 | 0 |
| 1221 | 008.0285 | 25-AUG-2004 | pemi | 40 | 3 | 177 | 42 | 656.4 | 648.0 | 33.6 | 0 | 40 | 40 | 80 | 0 |
| 1222 | 187.0540 | 08-FEB-2002 | saco | 40 | 3 | 127 | 80 | 460.0 | 415.0 | 35.0 | 0 | 40 | 40 | 80 | 0 |
| 1223 | 039.0073 | 17-SEP-2002 | mdct | 40 | 3 | 107 | 62 | 1481.6 | 1473.0 | 53.4 | 40 | 80 | 80 | 120 | 0 |
| 1224 | 203.0739 | 21-MAY-2005 | coch | 20 | 3 | 125 | 100 | 192.0 | 175.0 | 83.0 | 80 | 100 | 120 | 140 | 0 |
| 1225 | 206.0184 | 01-FEB-2002 | pemi | 40 | 3 | 248 | 220 | 525.0 | 505.2 | 200.2 | 200 | 240 | 240 | 280 | 0 |
| 1226 | 138.0141 | 21-JUN-2001 | mdct | 40 | 3 | 57 | 5 | 776.5 | 735.6 | -35.9 | 0 | 20 | 0 | 20 | C |
| 1227 | 254.0140 | 01-DEC-1994 | nrpc | 20 | 3 | 90 | 15 | 560.0 | 520.0 | -25.0 | 0 | 10 | 0 | 10 | C |
| 1228 | 145.0122 | 29-NOV-2001 | mdct | 40 | 3 | 26 | 6 | 794.8 | 767.2 | -21.6 | 0 | 20 | 0 | 20 | C |
| 1229 | 224.0092 | 06-DEC-2002 | upct | 40 | 3 | 27 | 7 | 916.5 | 888.9 | -20.6 | 0 | 40 | 0 | 40 | C |
| 1230 | 259.0099 | 16-JUL-2004 | pemi | 40 | 3 | 108 | 18 | 888.7 | 850.7 | -20.0 | 0 | 40 | 0 | 40 | C |
| 1231 | 033.0532 | 21-OCT-1993 | nrpc | 20 | 3 | 40 | 20 | 454.0 | 422.0 | -12.0 | 0 | 10 | 0 | 10 | C |
| 1232 | 021.0620 | 30-JUN-2003 | winn | 20 | 3 | 66 | 40 | 622.7 | 570.9 | -11.8 | 0 | 20 | 0 | 20 | C |
| 1233 | 143.0659 | 03-MAY-1999 | upmk | 20 | 3 | 68 | 18 | 460.0 | 431.9 | -10.1 | 0 | 20 | 0 | 20 | C |
| 1234 | 119.0513 | 14-JUN-1993 | nrpc | 20 | 3 | 24 | 10 | 288.0 | 269.0 | -9.0 | 0 | 10 | 0 | 10 | C |
| 1235 | 165.0046 | 30-MAY-1991 | nrpc | 20 | 3 | 18 | 5 | 165.0 | 152.8 | -7.2 | 0 | 10 | 0 | 10 | C |
| 1236 | 089.0772 | 07-MAR-2002 | lamp | 20 | 3 | 24 | 20 | 172.0 | 145.0 | -7.0 | 0 | 20 | 0 | 20 | C |
| 1237 | 050.0156 | 20-MAY-2005 | upct | 40 | 3 | 35 | 8 | 1040.0 | 1026.3 | -5.7 | 0 | 40 | 0 | 40 | C |
| 1238 | 006.1369 | 24-AUG-2004 | winn | 20 | 3 | 28 | 15 | 540.0 | 520.0 | -5.0 | 0 | 20 | 0 | 20 | C |
| 1239 | 051.0574 | 18-APR-2002 | cont | 40 | 3 | 107 | 25 | 345.0 | 316.9 | -3.1 | 0 | 40 | 0 | 40 | C |
| 1240 | 220.0076 | 19-MAR-2002 | upct | 40 | 3 | 68 | 15 | 973.4 | 959.5 | 1.1 | 0 | 40 | 0 | 40 | C |
| 1241 | 190.0197 | 04-OCT-2002 | cont | 40 | 3 | 150 | 7 | 800.0 | 795.0 | 2.0 | 0 | 40 | 0 | 40 | C |
| 1242 | 170.0423 | 08-NOV-2001 | winn | 20 | 3 | 23 | 10 | 545.1 | 537.2 | 2.1 | 0 | 20 | 0 | 20 | C |
| 1243 | 202.0652 | 22-DEC-2003 | cont | 40 | 3 | 47 | 22 | 1025.3 | 1007.0 | 3.7 | 0 | 40 | 0 | 40 | C |
| 1244 | 247.1400 | 06-JAN-2003 | mdmk | 20 | 3 | 45 | 20 | 522.0 | 506.6 | 4.6 | 0 | 20 | 0 | 20 | C |
| 1245 | 119.0636 | 07-OCT-1994 | nrpc | 20 | 3 | 42 | 25 | 206.7 | 187.0 | 5.3 | 0 | 10 | 0 | 10 | C |
| 1246 | 092.0119 | 03-JAN-2006 | Iwct | 40 | 3 | 25 | 15 | 1035.7 | 1028.5 | 7.8 | 0 | 40 | 0 | 40 | C |
| 1247 | 234.0215 | 28-MAR-2006 | mdmk | 20 | 3 | 23 | 15 | 810.6 | 804.4 | 8.8 | 0 | 20 | 0 | 20 | C |
| 1248 | 039.0078 | 25-OCT-2003 | mdct | 40 | 3 | 115 | 30 | 1342.2 | 1322.6 | 10.4 | 0 | 40 | 0 | 40 | C |
| 1249 | 242.0337 | 18-MAY-2006 | lwct | 40 | 3 | 48 |  | 452.8 | 449.9 | 12.1 | 0 | 40 | 0 | 40 | C |
| 1250 | 143.0692 | 18-JUN-2002 | upmk | 20 | 3 | 70 | 20 | 396.0 | 389.2 | 13.2 | 0 | 20 | 0 | 20 | C |


|  | Char |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WRB: New Hampshire Geologic Survey well identification number <br> AGeo: Aquifer Geology 1=100\% Till 2=Bedrock Bottom 3=Till Bottom <br> STI: Saturated Thickness Interval for the Study Area <br> OCU: Classification Type $\mathrm{O}=\mathbf{O v e r c l a s s e d} \mathrm{C}=$ Correctly-Classed U=Underclassed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | USGS | (ft) |  | Depth (ft bgs) |  | Interp (ft m Land | polated msl ) Water | Satu <br> Calc | rated Act Cla | Thic tual ass | knes Map Cl | $\begin{aligned} & \mathrm{s}(\mathrm{ft}) \\ & \text { oped } \\ & \text { ass } \\ & \hline \end{aligned}$ |  |
| Well | WRB | Completed | Study | STI | AGeo | Bedrock | Till | Elev | Table | ST | Min | Max | Min | Max | OCU |
| 1251 | 014.0174 | 12-OCT-1991 | upmk | 20 | 3 | 25 | 21 | 541.0 | 533.4 | 13.4 | 0 | 20 | 0 | 20 | C |
| 1252 | 247.1100 | 21-SEP-1998 | mdmk | 20 | 3 | 72 | 20 | 734.0 | 727.8 | 13.8 | 0 | 20 | 0 | 20 | C |
| 1253 | 126.0297 | 05-AUG-2004 | lwct | 40 | 3 | 46 | 20 | 530.2 | 524.0 | 13.8 | 0 | 40 | 0 | 40 | C |
| 1254 | 229.0477 | 08-JUL-2003 | Iwct | 40 | 3 | 86 | 30 | 1133.3 | 1118.7 | 15.4 | 0 | 40 | 0 | 40 | C |
| 1255 | 039.0106 | 16-MAY-2006 | mdct | 40 | 3 | 74 | 35 | 1311.2 | 1291.6 | 15.4 | 0 | 40 | 0 | 40 | C |
| 1256 | 142.2254 | 06-MAY-2004 | lwmk | 20 | 3 | 60 | 23 | 239.0 | 234.3 | 18.3 | 0 | 20 | 0 | 20 | C |
| 1257 | 043.0040 | 10-SEP-1997 | saco | 40 | 3 | 39 | 28 | 488.0 | 478.4 | 18.4 | 0 | 40 | 0 | 40 | C |
| 1258 | 025.0331 | 26-MAY-2006 | mdct | 40 | 3 | 65 | 35 | 1191.6 | 1175.2 | 18.6 | 0 | 40 | 0 | 40 | C |
| 1259 | 133.0135 | 07-AUG-2003 | Iwct | 40 | 3 | 28 | 20 | 429.0 | 427.9 | 18.9 | 0 | 40 | 0 | 40 | C |
| 1260 | 096.0125 | 13-FEB-2002 | pemi | 40 | 3 | 66 | 27 | 846.4 | 840.0 | 20.6 | 0 | 40 | 0 | 40 | C |
| 1261 | 121.0543 | 30-SEP-2003 | cont | 40 | 3 | 42 | 35 | 495.0 | 483.0 | 23.0 | 0 | 40 | 0 | 40 | C |
| 1262 | 243.0327 | 25-OCT-2001 | cont | 40 | 3 | 83 | 78 | 472.0 | 417.0 | 23.0 | 0 | 40 | 0 | 40 | C |
| 1263 | 102.0077 | 26-DEC-2002 | pemi | 40 | 3 | 43 | 30 | 665.7 | 660.0 | 24.3 | 0 | 40 | 0 | 40 | C |
| 1264 | 232.0725 | 23-OCT-2003 | Iwct | 40 | 3 | 86 | 29 | 490.5 | 485.9 | 24.4 | 0 | 40 | 0 | 40 | C |
| 1265 | 159.0130 | 14-APR-1988 | nrpc | 20 | 3 | 42 | 35 | 250.0 | 240.0 | 25.0 | 20 | 40 | 20 | 40 | C |
| 1266 | 193.0622 | 04-MAY-2006 | upct | 40 | 3 | 78 | 30 | 1184.2 | 1179.6 | 25.4 | 0 | 40 | 0 | 40 | C |
| 1267 | 036.0478 | 25-JUL-2003 | mdct | 40 | 3 | 55 | 30 | 924.0 | 920.0 | 26.0 | 20 | 40 | 20 | 40 | C |
| 1268 | 232.0717 | 28-JUL-2003 | Iwct | 40 | 3 | 64 | 35 | 501.6 | 493.4 | 26.8 | 0 | 40 | 0 | 40 | C |
| 1269 | 118.0319 | 08-MAY-2002 | pemi | 40 | 3 | 74 | 40 | 810.1 | 799.0 | 28.9 | 0 | 40 | 0 | 40 | C |
| 1270 | 052.0569 | 22-JAN-2003 | saco | 40 | 3 | 70 | 55 | 449.0 | 423.2 | 29.2 | 0 | 40 | 0 | 40 | C |
| 1271 | 188.0683 | 15-AUG-1997 | nrpc | 20 | 3 | 47 | 43 | 154.1 | 143.1 | 32.0 | 20 | 40 | 20 | 40 | C |
| 1272 | 124.0273 | 31-OCT-2003 | cont | 40 | 3 | 84 | 38 | 1043.0 | 1039.2 | 34.2 | 0 | 40 | 0 | 40 | C |
| 1273 | 058.0141 | 29-DEC-2001 | pemi | 40 | 3 | 66 | 46 | 803.6 | 795.4 | 37.8 | 0 | 40 | 0 | 40 | C |
| 1274 | 251.0186 | 19-JUN-2002 | lwct | 40 | 3 | 160 | 50 | 328.6 | 316.5 | 37.9 | 0 | 40 | 0 | 40 | C |
| 1275 | 251.0161 | 08-APR-1999 | Iwct | 40 | 3 | 47 | 42 | 603.0 | 599.8 | 38.8 | 0 | 40 | 0 | 40 | C |
| 1276 | 220.0091 | 23-SEP-2005 | upct | 40 | 3 | 54 | 50 | 947.5 | 941.1 | 43.6 | 40 | 80 | 40 | 80 | C |
| 1277 | 007.1045 | 22-NOV-2002 | nrpc | 20 | 3 | 80 | 57 | 200.0 | 198.0 | 55.0 | 40 | 60 | 40 | 60 | C |
| 1278 | 092.0085 | 25-FEB-1999 | Iwct | 40 | 3 | 106 | 75 | 728.3 | 720.5 | 67.2 | 40 | 80 | 40 | 80 | C |
| 1279 | 080.0066 | 20-NOV-2001 | upct | 40 | 3 | 128 | 100 | 1265.0 | 1245.8 | 80.8 | 80 | 120 | 80 | 120 | C |
| 1280 | 241.0544 | 06-OCT-1999 | saco | 40 | 3 | 165 | 140 | 670.0 | 620.0 | 90.0 | 80 | 120 | 80 | 120 | C |
| 1281 | 233.0415 | 02-AUG-2002 | saco | 40 | 3 | 299 | 140 | 482.0 | 439.5 | 97.5 | 80 | 120 | 80 | 120 | C |
| 1282 | 004.0132 | 07-APR-1998 | upmk | 20 | 3 | 135 | 39 | 320.0 | 303.9 | 22.9 | 20 | 40 | 0 | 20 | U |
| 1283 | 119.0899 | 11-AUG-1998 | nrpc | 20 | 3 | 95 | 60 | 370.6 | 335.5 | 24.9 | 20 | 40 | 10 | 20 | U |
| 1284 | 027.1146 | 27-FEB-2002 | upmk | 20 | 3 | 79 | 59 | 322.0 | 298.2 | 35.2 | 20 | 40 | 0 | 20 | U |
| 1285 | 204.0129 | 11-FEB-2004 | coch | 20 | 3 | 108 | 42 | 123.5 | 118.4 | 36.9 | 20 | 40 | 10 | 20 | U |
| 1286 | 203.0806 | 25-MAR-2006 | coch | 20 | 3 | 70 | 50 | 195.0 | 182.0 | 37.0 | 20 | 40 | 10 | 20 | U |
| 1287 | 087.0146 | 06-JUL-2001 | pemi | 40 | 3 | 117 | 72 | 413.4 | 382.0 | 40.6 | 40 | 80 | 0 | 40 | U |
| 1288 | 058.0162 | 20-OCT-2003 | pemi | 40 | 3 | 66 | 44 | 841.0 | 840.0 | 43.0 | 40 | 80 | 0 | 40 | U |
| 1289 | 114.0423 | 12-MAR-2002 | cont | 40 | 3 | 68 | 45 | 392.4 | 390.6 | 43.2 | 40 | 80 | 0 | 40 | U |
| 1290 | 232.0669 | 22-AUG-2002 | Iwct | 40 | 3 | 76 | 45 | 564.0 | 563.1 | 44.1 | 40 | 80 | 0 | 40 | U |
| 1291 | 136.0190 | 15-JUL-2003 | lwct | 40 | 3 | 64 | 49 | 1217.0 | 1214.6 | 46.6 | 40 | 80 | 0 | 40 | U |
| 1292 | 131.0210 | 09-FEB-2005 | upct | 40 | 3 | 68 | 53 | 867.0 | 861.0 | 47.0 | 40 | 80 | 0 | 40 | U |
| 1293 | 107.0174 | 20-NOV-2002 | cont | 40 | 3 | 95 | 68 | 740.0 | 720.0 | 48.0 | 40 | 80 | 0 | 40 | U |
| 1294 | 188.0684 | 06-AUG-1997 | nrpc | 20 | 3 | 203 | 84 | 180.0 | 152.1 | 56.1 | 40 | 60 | 20 | 40 | U |
| 1295 | 093.1062 | 13-MAR-2002 | mdmk | 20 | 3 | 113 | 107 | 270.8 | 225.1 | 61.3 | 60 | 80 | 0 | 20 | U |
| 1296 | 243.0375 | 27-MAY-2003 | cont | 40 | 3 | 167 | 76 | 460.0 | 451.0 | 67.0 | 40 | 80 | 0 | 40 | U |
| 1297 | 165.0113 | 15-SEP-1998 | nrpc | 20 | 3 | 99 | 94 | 190.3 | 180.8 | 84.5 | 80 | 100 | 10 | 20 | U |
| 1298 | 098.0169 | 08-OCT-2002 | cont | 40 | 3 | 117 | 101 | 803.0 | 799.0 | 97.0 | 80 | 120 | 0 | 40 | U |
| 1299 | 008.0300 | 19-JUL-2005 | cont | 40 | 3 | 138 | 110 | 626.8 | 621.0 | 104.2 | 80 | 120 | 40 | 80 | U |
| 1300 | 140.0373 | 13-JUL-2005 | mdct | 40 | 3 | 206 | 178 | 866.8 | 850.0 | 161.2 | 160 | 200 | 0 | 40 | U |

## APPENDIX H

## 1990 AND 2000 AQUIFER-SUBSET POPULATIONS BY TOWN






Upland + OSDA $=100 \%$ NH Population



## APPENDIX I

OSDA75 STATISTICS AND MODELED OSDA75 LOSSES BY TOWN FOR 2025


| OSDA75 Statistics for 2000 and Modeled OSDA75 Losses for 2025 |  |  |  |  | Scenario= <br> \%Change: 2000 NH OSDA75P= |  |  |  | $\begin{gathered} \hline \text { A } \\ 0 \% \end{gathered}$ | $\begin{gathered} \text { B } \\ 19.1 \% \end{gathered}$ | C D <br> $38.2 \%$ $100 \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | $\begin{aligned} & 0.0 \mathrm{mi}^{2} \text { in Gray } \\ & \hline \text { Apportion }\left(\mathrm{mi}^{2}\right) \end{aligned}$ |  | Apport ( $\mathrm{mi}^{2}$ ) 2000 RSDA75 OSDA75L |  | Modeled 2025 OSDA75L ( $\mathrm{mi}^{\mathbf{2}}$ ) |  |  |  | $\begin{gathered} \text { \%Lost > 90\% in Gray } \\ \text { \%OSDA150 Lost -2025 } \end{gathered}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | OSDA | OSDA75 |  |  | A | B | C | D | A | B | C | D |
| Bridgewater | 2.5430 | 0.5070 | 0.1894 | 0.3176 | 0.3176 | 0.3277 | 0.3341 | 0.3521 | 62.6 | 64.6 | 65.9 | 69.4 |
| Bristol | 2.9688 | 0.7332 | 0.1865 | 0.5468 | 0.5468 | 0.5615 | 0.5719 | 0.6011 | 74.6 | 76.6 | 78.0 | 82.0 |
| Brookfield | 1.6722 | 0.1841 | 0.1140 | 0.0701 | 0.0701 | 0.0779 | 0.0805 | 0.0878 | 38.1 | 42.3 | 43.7 | 47.7 |
| Brookline | 6.1817 | 3.6009 | 1.5753 | 2.0256 | 2.0256 | 2.1545 | 2.2075 | 2.3553 | 56.3 | 59.8 | 61.3 | 65.4 |
| Cambridge | 7.6888 | 1.9905 | 1.7863 | 0.2042 | Not MCD, Not Modeled |  |  |  |  |  |  |  |
| Campton | 6.3282 | 2.9169 | 0.8295 | 2.0875 | 2.0875 | 2.1457 | 2.1834 | 2.2886 | 71.6 | 73.6 | 74.9 | 78.5 |
| Canaan | 8.1797 | 1.8096 | 0.9044 | 0.9052 | 0.9052 | 0.9280 | 0.9519 | 1.0187 | 50.0 | 51.3 | 52.6 | 56.3 |
| Candia | 2.9054 | 0.0614 | 0.0196 | 0.0418 | 0.0418 | 0.0432 | 0.0442 | 0.0470 | 68.1 | 70.3 | 72.0 | 76.6 |
| Canterbury | 7.0912 | 0.3144 | 0.1479 | 0.1664 | 0.1664 | 0.1731 | 0.1769 | 0.1876 | 52.9 | 55.1 | 56.3 | 59.7 |
| Carroll | 10.4412 | 3.0550 | 1.1792 | 1.8758 | 1.8758 | 1.8963 | 1.9303 | 2.0253 | 61.4 | 62.1 | 63.2 | 66.3 |
| Center Harbor | 0.5335 | 0.0100 | 0.0015 | 0.0085 | 0.0085 | 0.0088 | 0.0090 | 0.0094 | 84.9 | 87.9 | 89.4 | 93.7 |
| Chandlers Purchase | 0.0000 | 0.0000 | 0.0000 | 0.0000 | Not MCD, Not Modeled |  |  |  |  |  |  |  |
| Charlestown | 9.4777 | 2.1809 | 0.6533 | 1.5276 | 1.5276 | 1.5815 | 1.6145 | 1.7065 | 70.0 | 72.5 | 74.0 | 78.2 |
| Chatham | 4.0567 | 1.5094 | 0.8396 | 0.6698 | 0.6698 | 0.7026 | 0.7169 | 0.7569 | 44.4 | 46.6 | 47.5 | 50.1 |
| Chester | 4.8224 | 0.0000 | 0.0000 | 0.0000 | MCD, Not Modeled |  |  |  |  |  |  |  |
| Chesterfield | 2.1230 | 0.2822 | 0.0312 | 0.2510 | 0.2510 | 0.2578 | 0.2624 | 0.2750 | 89.0 | 91.4 | 93.0 | 97.4 |
| Chichester | 1.1432 | 0.1111 | 0.0126 | 0.0985 | 0.0985 | 0.1017 | 0.1033 | 0.1077 | 88.6 | 91.5 | 92.9 | 96.9 |
| Claremont | 9.4424 | 1.5106 | 0.2997 | 1.2109 | 1.2109 | 1.2255 | 1.2499 | 1.3181 | 80.2 | 81.1 | 82.7 | 87.3 |
| Clarksville | 1.6420 | 0.3012 | 0.1653 | 0.1359 | 0.1359 | 0.1370 | 0.1401 | 0.1487 | 45.1 | 45.5 | 46.5 | 49.4 |
| Colebrook | 5.5630 | 1.3377 | 0.3314 | 1.0063 | 1.0063 | 1.0139 | 1.0347 | 1.0925 | 75.2 | 75.8 | 77.3 | 81.7 |
| Columbia | 2.9935 | 1.5737 | 0.4935 | 1.0802 | 1.0802 | 1.0881 | 1.1071 | 1.1600 | 68.6 | 69.1 | 70.3 | 73.7 |
| Concord | 31.2152 | 2.0060 | 0.8230 | 1.1830 | 1.1830 | 1.2188 | 1.2445 | 1.3161 | 59.0 | 60.8 | 62.0 | 65.6 |
| Conway | 22.2434 | 9.3522 | 3.3818 | 5.9704 | 5.9704 | 6.1062 | 6.2286 | 6.5699 | 63.8 | 65.3 | 66.6 | 70.3 |
| Cornish | 2.6588 | 0.3431 | 0.1096 | 0.2336 | 0.2336 | 0.2434 | 0.2484 | 0.2624 | 68.1 | 70.9 | 72.4 | 76.5 |
| Crawfords Purchase | 0.1414 | 0.0030 | 0.0009 | 0.0021 |  | MCD, | ot Modeled |  |  |  |  |  |
| Croydon | 0.9096 | 0.3247 | 0.0519 | 0.2728 | 0.2728 | 0.2842 | 0.2885 | 0.3007 | 84.0 | 87.5 | 88.9 | 92.6 |
| Cutts Grant | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | MCD, | ot Modele |  |  |  |  |  |
| Dalton | 3.8916 | 1.7285 | 0.8159 | 0.9126 | 0.9126 | 0.9294 | 0.9498 | 1.0069 | 52.8 | 53.8 | 55.0 | 58.3 |
| Danbury | 4.6995 | 1.3434 | 0.5184 | 0.8250 | 0.8250 | 0.8513 | 0.8662 | 0.9079 | 61.4 | 63.4 | 64.5 | 67.6 |


| OSDA75 Statistics for 2000 and Modeled OSDA75 Losses for 2025 |  |  |  |  | \%Change: 2000 NH OSDA75P= |  |  |  | $\begin{gathered} \text { A } \\ 0 \% \end{gathered}$ | $\begin{gathered} \text { B } \\ 19.1 \% \end{gathered}$ | C D <br> $38.2 \%$ $100 \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | $\frac{0.0 \mathrm{mi}^{2} \text { in Gray }}{\text { Apportion }\left(\mathrm{mi}^{2}\right)}$ |  | Apport ( $\mathrm{mi}^{2}$ ) 2000 RSDA75 OSDA75L |  | Modeled 2025 OSDA75L ( $\mathrm{mi}^{2}$ ) |  |  |  | \%Lost > $90 \%$ in Gray |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | OSDA | OSDA75 |  |  | A | B | C | D | A | B | C | D |
| Danville | 2.2677 | 0.0000 | 0.0000 | 0.0000 | MCD, Not Modeled |  |  |  |  |  |  |  |
| Deerfield | 4.8255 | 0.0311 | 0.0104 | 0.0207 | 0.0207 | 0.0216 | 0.0220 | 0.0232 | 66.6 | 69.4 | 70.8 | 74.7 |
| Deering | 4.0819 | 2.1544 | 1.0959 | 1.0585 | 1.0585 | 1.1080 | 1.1380 | 1.2217 | 49.1 | 51.4 | 52.8 | 56.7 |
| Derry | 5.0263 | 0.7596 | 0.0272 | 0.7324 | 0.7324 | 0.7469 | 0.7596 | 0.7596 | 96.4 | 98.3 | 100.0 | 100.0 |
| Dixs Grant | 0.4786 | 0.1244 | 0.1023 | 0.0221 | Not MCD, Not Modeled |  |  |  |  |  |  |  |
| Dixville | 1.3326 | 0.2672 | 0.1572 | 0.1100 |  |  |  |  | 52.7 | 54.4 | 55.6 | 58.9 |
| Dorchester | 0.8081 | 0.1090 | 0.0515 | 0.0575 | 0.0575 | 0.0593 | 0.0606 | 0.0642 |  |  |  |  |
| Dover | 20.2108 | 3.8571 | 1.2304 | 2.6267 | 2.6267 | 2.6752 | 2.7415 | 2.9262 | 68.1 | 69.4 | 71.1 | 75.9 |
| Dublin | 1.4358 | 0.1405 | 0.0874 | 0.0531 | 0.0531 | 0.0556 | 0.0575 | 0.0626 | 37.8 | 39.6 | 40.9 | 44.6 |
| Dummer | 1.8541 | 0.3704 | 0.1905 | 0.1799 | 0.1799 | 0.1812 | 0.1850 | 0.1955 | 48.6 | 48.9 | 50.0 | 52.8 |
| Dunbarton | 1.7049 | 0.1385 | 0.0882 | 0.0503 | 0.0503 | 0.0534 | 0.0550 | 0.0593 | 36.3 | 38.6 | 39.7 | 42.8 |
| Durham | 1.1529 | 0.2058 | 0.1207 | 0.0851 | 0.0851 | 0.0892 | 0.0920 | 0.0999 | 41.3 | 43.3 | 44.748 .5 |  |
| East Kingston | 1.0593 | 0.0000 | 0.0000 | 0.0000 | MCD, Not Modeled |  |  |  |  |  |  |  |  |
| Easton | 3.4227 | 1.0302 | 0.6683 | 0.3619 | 0.3619 | 0.3826 | 0.3939 | 0.4257 | 35.1 | 37.1 | 38.2 | 41.3 |
| Eaton | 2.0615 | 0.6687 | 0.2591 | 0.4097 | 0.4097 | 0.4301 | 0.4383 | 0.4609 | 61.3 | 64.3 | 65.5 | 68.9 |
| Effingham | 15.7493 | 6.3171 | 4.2800 | 2.0371 | 2.0371 | 2.2152 | 2.2860 | 2.4833 | 32.2 | 35.1 | 36.2 | 39.3 |
| Ellsworth | 0.0000 | 0.0000 | 0.0000 | 0.0000 | MCD, Not Modeled |  |  |  |  |  |  |  |
| Enfield | 2.7936 | 0.5119 | 0.1931 | 0.3188 | 0.3188 | 0.3298 | 0.3372 | 0.3580 | 62.3 | 64.4 | 65.9 | 69.9 |
| Epping | 3.8973 | 0.1753 | 0.0422 | 0.1332 | 0.1332 | 0.1374 | 0.1406 | 0.1496 | 75.9 | 78.4 | 80.2 | 85.3 |
| Epsom | 4.2380 | 0.6072 | 0.1388 | 0.4684 | 0.4684 | 0.4857 | 0.4950 | 0.5209 | 77.1 | 80.0 | 81.5 | 85.8 |
| Errol | 9.0857 | 1.9596 | 1.2592 | 0.7003 | 0.7003 | 0.7237 | 0.7435 | 0.7987 | 35.7 | 36.9 | 37.9 | 40.8 |
| Ervings Location | 0.0000 | 0.0000 | 0.0000 | 0.0000 | Not MCD, Not Modeled |  |  |  |  |  |  |  |
| Exeter | 2.8367 | 0.4961 | 0.2561 | 0.2400 | 0.2400 | 0.2487 | 0.2565 | 0.2783 | 48.4 | 50.1 | 51.7 | 56.1 |
| Farmington | 4.0003 | 1.1090 | 0.3104 | 0.7986 | 0.7986 | 0.8352 | 0.8532 | 0.9033 | 72.0 | 75.3 | 76.9 | 81.5 |
| Fitzwilliam | 2.6940 | 0.4692 | 0.2742 | 0.1950 | 0.1950 | 0.2033 | 0.2092 | 0.2257 | 41.6 | 43.3 | 44.6 | 48.1 |
| Francestown | 4.4109 | 0.1535 | 0.0781 | 0.0754 | 0.0754 | 0.0795 | 0.0816 | 0.0875 | 49.1 | 51.8 | 53.2 | 57.0 |
| Franconia | 4.5579 | 1.7209 | 0.8218 | 0.8991 | 0.8991 | 0.9297 | 0.9513 | 1.0116 | 52.2 | 54.0 | 55.3 | 58.8 |
| Franklin | 7.9789 | 1.3088 | 0.4759 | 0.8329 | 0.8329 | 0.8380 | 0.8571 | 0.9106 | 63.6 | 64.0 | 65.5 | 69.6 |
| Freedom | 9.2521 | 5.2253 | 2.1942 | 3.0311 | 3.0311 | 3.1917 | 3.2551 | 3.4318 | 58.0 | 61.1 | 62.3 | 65.7 |




| OSDA75 Statistics for 2000 and Modeled OSDA75 Losses for 2025 |  |  |  |  | \%Change: 2000 NH OSDA75P= |  |  |  | $\begin{gathered} \text { A } \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} \text { B } \\ 19.1 \% \end{gathered}$ | C D <br> $38.2 \%$ $100 \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | $\frac{0.0 \mathrm{mi}^{2} \text { in Gray }}{\text { Apportion }\left(\mathrm{mi}^{2}\right)}$ |  | Apport (mi ${ }^{2}$ ) 2000 RSDA75 OSDA75L |  | Modeled 2025 OSDA75L ( $\mathrm{mi}^{2}$ ) |  |  |  | \%Lost > 90\% in Gray \%OSDA150 Lost -2025 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | OSDA | OSDA75 |  |  | A | B | C | D | A | B | c | D |
| Madbury | 4.3967 | 1.0107 | 0.4570 | 0.5536 | 0.5536 | 0.5824 | 0.5964 | 0.6356 | 54.8 | 57.6 | 59.0 | 62.9 |
| Madison | 9.0359 | 6.1351 | 2.8470 | 3.2881 | 3.2881 | 3.4726 | 3.5470 | 3.7547 | 53.6 | 56.6 | 57.8 | 61.2 |
| Manchester | 18.4761 | 4.8018 | 0.3088 | 4.4930 | 4.4930 | 4.5581 | 4.6556 | 4.8018 | 93.6 | 94.9 | 97.0 | 100.0 |
| Marlborough | 0.5343 | 0.0431 | 0.0021 | 0.0410 | 0.0410 | 0.0419 | 0.0428 | 0.0431 | 95.1 | 97.3 | 99.3 | 100.0 |
| Marlow | 1.6060 | 0.1135 | 0.0167 | 0.0967 | 0.0967 | 0.0995 | 0.1014 | 0.1066 | 85.3 | 87.7 | 89.3 | 94.0 |
| Martins Location | 0.5428 | 0.0000 | 0.0000 | 0.0000 | Not MCD, Not Modeled |  |  |  |  |  |  |  |
| Mason | 3.4564 | 0.0745 | 0.0200 | 0.0545 | 0.0545 | 0.0560 | 0.0569 | 0.0595 | 73.1 | 75.2 | 76.4 | 79.8 |
| Meredith | 2.5901 | 0.3726 | 0.0929 | 0.2797 | 0.2797 | 0.2930 | 0.2992 | 0.3163 | 75.1 | 78.6 | 80.3 | 84.9 |
| Merrimack | 17.8525 | 5.8035 | 0.8376 | 4.9659 | 4.9659 | 5.1390 | 5.2371 | 5.5105 | 85.6 | 88.6 | 90.2 | 95.0 |
| Middleton | 0.1590 | 0.0295 | 0.0135 | 0.0160 | 0.0160 | 0.0171 | 0.0175 | 0.0187 | 54.4 | 57.9 | 59.3 | 63.2 |
| Milan | 6.8533 | 1.2977 | 0.8627 | 0.4350 | 0.4350 | 0.4412 | 0.4539 | 0.4895 | 33.5 | 34.0 | 35.0 | 37.7 |
| Milford | 9.0554 | 4.7558 | 1.1243 | 3.6316 | 3.6316 | 3.7649 | 3.8405 | 4.0513 | 76.4 | 79.2 | 80.8 | 85.2 |
| Millsfield | 0.4027 | 0.0194 | 0.0073 | 0.0121 | Not MCD, Not Modeled |  |  |  |  |  |  |  |
| Milton | 3.5419 | 1.0194 | 0.3216 | 0.6978 | 0.6978 | 0.7359 | 0.7535 | 0.8028 | 68.5 | 72.2 | 73.9 | 78.8 |
| Monroe | 4.0531 | 1.0412 | 0.2653 | 0.7759 | 0.7759 | 0.7955 | 0.8086 | 0.8451 | 74.5 | 76.4 | 77.7 | 81.2 |
| Mont Vernon | 0.4135 | 0.0595 | 0.0407 | 0.0188 | 0.0188 | 0.0201 | 0.0208 | 0.0228 | 31.6 | 33.7 | 34.9 | 38.3 |
| Moultonborough | 7.2951 | 0.2882 | 0.1129 | 0.1753 | 0.1753 | 0.1860 | 0.1900 | 0.2013 | 60.8 | 64.5 | 65.9 | 69.9 |
| Nashua | 21.0281 | 12.8491 | 1.5752 | 11.2739 | 11.2739 | 11.3884 | 11.6350 | 12.3230 | 87.7 | 88.6 | 90.6 | 95.9 |
| Nelson | 0.7394 | 0.1201 | 0.0744 | 0.0458 | 0.0458 | 0.0474 | 0.0488 | 0.0527 | 38.1 | 39.5 | 40.6 | 43.9 |
| New Boston | 9.4485 | 0.9558 | 0.3376 | 0.6181 | 0.6181 | 0.6526 | 0.6669 | 0.7069 | 64.7 | 68.3 | 69.8 | 74.0 |
| New Castle | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | MCD, Not | Modeled |  |  |  |  |  |
| New Durham | 5.0328 | 0.6356 | 0.2417 | 0.3939 | 0.3939 | 0.4257 | 0.4349 | 0.4604 | 62.0 | 67.0 | 68.4 | 72.4 |
| New Hampton | 5.6452 | 1.3454 | 0.2920 | 1.0534 | 1.0534 | 1.0929 | 1.1108 | 1.1607 | 78.3 | 81.2 | 82.6 | 86.3 |
| New Ipswich | 5.8510 | 0.8619 | 0.4984 | 0.3635 | 0.3635 | 0.3850 | 0.3968 | 0.4295 | 42.2 | 44.7 | 46.0 | 49.8 |
| New London | 1.2531 | 0.1982 | 0.0929 | 0.1053 | 0.1053 | 0.1094 | 0.1117 | 0.1180 | 53.1 | 55.2 | 56.3 | 59.5 |
| Newbury | 2.0623 | 0.6764 | 0.2872 | 0.3892 | 0.3892 | 0.4095 | 0.4184 | 0.4432 | 57.5 | 60.5 | 61.9 | 65.5 |
| Newfields | 0.7900 | 0.0616 | 0.0437 | 0.0179 | 0.0179 | 0.0192 | 0.0201 | 0.0225 | 29.1 | 31.1 | 32.6 | 36.6 |
| Newington | 3.2411 | 0.1882 | 0.0000 | 0.1882 | 0.1882 | 0.1882 | 0.1882 | 0.1882 | 100.0 | 100.0 | 100.0 | 100.0 |
| Newmarket | 1.0477 | 0.1798 | 0.0395 | 0.1403 | 0.1403 | 0.1444 | 0.1473 | 0.1556 | 78.0 | 80.3 | 81.9 | 86.5 |



| OSDA75 Statistics for 2000 and Modeled OSDA75 Losses for 2025 |  |  |  |  | Scenario=\%Change: 2000 NH OSDA75P= |  |  |  | $\begin{gathered} \text { A } \\ 0 \% \end{gathered}$ | $\begin{gathered} \text { B } \\ 19.1 \% \end{gathered}$ | $\begin{array}{cc\|} \hline \text { C } & \text { D } \\ 38.2 \% & 100 \% \\ \hline \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | $\frac{0.0 \mathrm{mi}^{2} \text { in Gray }}{\text { Apportion }\left(\mathrm{mi}^{2}\right)}$ |  | Apport ( $\mathrm{mi}^{2}$ ) 2000 <br> RSDA75 OSDA75L |  | Modeled 2025 OSDA75L ( $\mathrm{mi}^{2}$ ) |  |  |  | $\begin{gathered} \text { \%Lost > 90\% in Gray } \\ \text { \%OSDA150 Lost -2025 } \end{gathered}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | OSDA | OSDA75 |  |  | A | B | C | D | A | B | C | D |
| Rumney | 6.3245 | 1.8863 | 0.6244 | 1.2619 | 1.2619 | 1.2956 | 1.3207 | 1.3905 | 66.9 | 68.7 | 70.0 | 73.7 |
| Rye | 2.6505 | 0.3100 | 0.0327 | 0.2774 | 0.2774 | 0.2823 | 0.2874 | 0.3018 | 89.5 | 91.1 | 92.7 | 97.3 |
| Salem | 8.0400 | 1.3046 | 0.2031 | 1.1015 | 1.1015 | 1.1265 | 1.1498 | 1.2149 | 84.4 | 86.3 | 88.1 | 93.1 |
| Salisbury | 6.1006 | 0.5047 | 0.2942 | 0.2105 | 0.2105 | 0.2222 | 0.2277 | 0.2429 | 41.7 | 44.0 | 45.1 | 48.1 |
| Sanbornton | 6.1367 | 0.9933 | 0.4852 | 0.5081 | 0.5081 | 0.5363 | 0.5488 | 0.5836 | 51.2 | 54.0 | 55.3 | 58.8 |
| Sandown | 3.7160 | 0.0408 | 0.0014 | 0.0393 | 0.0393 | 0.0408 | 0.0408 | 0.0408 | 96.5 | 100.0 | 100.0 | 100.0 |
| Sandwich | 7.2948 | 2.1691 | 1.3505 | 0.8186 | 0.8186 | 0.8636 | 0.8856 | 0.9469 | 37.7 | 39.8 | 40.8 | 43.7 |
| Sargents Purchase | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | ot MCD, | ot Modeled |  |  |  |  |  |
| Seabrook | 0.9755 | 0.3377 | 0.0752 | 0.2625 | 0.2625 | 0.2727 | 0.2795 | 0.2985 | 77.7 | 80.7 | 82.8 | 88.4 |
| Second College | 4.5713 | 1.1879 | 1.0273 | 0.1607 |  | ot MCD, | ot Modeled |  |  |  |  |  |
| Sharon | 3.6251 | 0.3813 | 0.2615 | 0.1198 | 0.1198 | 0.1229 | 0.1268 | 0.1377 | 31.4 | 32.2 | 33.3 | 36.1 |
| Shelburne | 5.6392 | 3.3651 | 1.2516 | 2.1135 | 2.1135 | 2.1265 | 2.1616 | 2.2594 | 62.8 | 63.2 | 64.2 | 67.1 |
| Somersworth | 6.5860 | 1.0413 | 0.2894 | 0.7519 | 0.7519 | 0.7671 | 0.7849 | 0.8347 | 72.2 | 73.7 | 75.4 | 80.2 |
| South Hampton | 0.7002 | 0.0013 | 0.0003 | 0.0010 |  | MCD, Not | Modeled |  |  |  |  |  |
| Springfield | 0.8621 | 0.2237 | 0.0877 | 0.1360 | 0.1360 | 0.1435 | 0.1466 | 0.1553 | 60.8 | 64.2 | 65.5 | 69.4 |
| Stark | 6.1909 | 3.2767 | 1.3075 | 1.9692 | 1.9692 | 1.9852 | 2.0198 | 2.1165 | 60.1 | 60.6 | 61.6 | 64.6 |
| Stewartstown | 3.3158 | 0.6241 | 0.3599 | 0.2641 | 0.2641 | 0.2662 | 0.2730 | 0.2922 | 42.3 | 42.7 | 43.8 | 46.8 |
| Stoddard | 0.6704 | 0.0248 | 0.0184 | 0.0064 |  | MCD, Not | Modeled |  |  |  |  |  |
| Strafford | 2.1514 | 0.1499 | 0.0678 | 0.0821 | 0.0821 | 0.0871 | 0.0894 | 0.0959 | 54.8 | 58.1 | 59.6 | 64.0 |
| Stratford | 6.1742 | 2.1359 | 0.8181 | 1.3178 | 1.3178 | 1.3305 | 1.3565 | 1.4290 | 61.7 | 62.3 | 63.5 | 66.9 |
| Stratham | 2.9143 | 0.0740 | 0.0090 | 0.0649 | 0.0649 | 0.0671 | 0.0684 | 0.0720 | 87.8 | 90.7 | 92.5 | 97.3 |
| Success | 2.6449 | 0.6873 | 0.6241 | 0.0632 |  | ot MCD, | ot Modeled |  |  |  |  |  |
| Sugar Hill | 0.4519 | 0.1422 | 0.0015 | 0.1407 | 0.1407 | 0.1422 | 0.1422 | 0.1422 | 98.9 | 100.0 | 100.0 | 100.0 |
| Sullivan | 0.1261 | 0.0000 | 0.0000 | 0.0000 |  | MCD, Not | Modeled |  |  |  |  |  |
| Sunapee | 0.6131 | 0.0616 | 0.0047 | 0.0568 | 0.0568 | 0.0591 | 0.0601 | 0.0616 | 92.3 | 96.1 | 97.7 | 100.0 |
| Surry | 2.1610 | 0.2195 | 0.1186 | 0.1008 | 0.1008 | 0.1041 | 0.1069 | 0.1149 | 45.9 | 47.4 | 48.7 | 52.3 |
| Sutton | 6.2595 | 0.8888 | 0.4407 | 0.4481 | 0.4481 | 0.4702 | 0.4803 | 0.5084 | 50.4 | 52.9 | 54.0 | 57.2 |
| Swanzey | 11.7095 | 8.0235 | 2.3711 | 5.6524 | 5.6524 | 5.8110 | 5.9249 | 6.2426 | 70.4 | 72.4 | 73.8 | 77.8 |
| Tamworth | 15.3105 | 8.3572 | 4.4844 | 3.8727 | 3.8727 | 4.0924 | 4.1945 | 4.4792 | 46.3 | 49.0 | 50.2 | 53.6 |

## APPENDIX J

OSDA150 STATISTICS, 2000, AND MODELED OSDA150 LOSSES. 2025, BY TOWN

| OSDA150 Statistics-2000 and Modeled Losses-2025 |  |  |  |  | \%Change 2000 NH OSDA150P = |  |  |  | $\begin{gathered} \hline \text { A } \\ 0 \% \end{gathered}$ | $\begin{gathered} \hline \text { B } \\ 19.6 \% \end{gathered}$ | $\begin{gathered} \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \hline D \\ 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion ( $\mathrm{mi}^{2}$ ) |  | $0.0 \mathrm{mi}^{2}$ is in GrayApportion $\left(\mathrm{mi}^{2}\right) 2000$ |  | Modeled 2025 OSDA150L ( $\mathrm{mi}^{\mathbf{2}}$ ) |  |  |  | \%Lost > 90\% in Gray |  |  |  |
|  |  |  | \%OSD | 150 |  |  |  |  | ost by | 2025 |
|  | OSDA | OSDA150 |  |  | OSDA150L | RSDA150 | A | B | C | D | A | B | C | D |
| Acworth | 1.4782 | 0.0502 | 0.0479 | 0.0023 | 0.0479 | 0.0499 | 0.0502 | 0.0502 | 95.4 | 99.4 | 100.0 | 100.0 |
| Albany | 8.2841 | 2.1268 | 1.0932 | 1.0337 | 1.0932 | 1.1479 | 1.1687 | 1.2396 | 51.4 | 54.0 | 55.0 | 58.3 |
| Alexandria | 4.1698 | 0.7972 | 0.3205 | 0.4767 | 0.3205 | 0.3397 | 0.3479 | 0.3761 | 40.2 | 42.6 | 43.6 | 47.2 |
| Allenstown | 4.7449 | 0.1625 | 0.0994 | 0.0631 | 0.0994 | 0.1035 | 0.1055 | 0.1124 | 61.2 | 63.7 | 64.9 | 69.2 |
| Alstead | 1.2985 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 GPM Model, but not 150 GPM |  |  |  |  |  |  |  |
| Alton | 6.6333 | 0.1683 | 0.1347 | 0.0336 | 0.1347 | 0.1434 | 0.1457 | 0.1535 | 80.1 | 85.2 | 86.6 | 91.2 |
| Amherst | 12.9012 | 7.6370 | 6.3939 | 1.2431 | 6.3939 | 6.6064 | 6.7017 | 7.0262 | 83.7 | 86.5 | 87.8 | 92.0 |
| Andover | 6.4717 | 1.5738 | 1.0750 | 0.4988 | 1.0750 | 1.1175 | 1.1365 | 1.2010 | 68.3 | 71.0 | 72.2 | 76.3 |
| Antrim | 3.5085 | 0.0765 | 0.0271 | 0.0494 | 0.0271 | 0.0281 | 0.0289 | 0.0315 | 35.4 | 36.8 | 37.7 | 41.1 |
| Ashland | 2.6454 | 0.3825 | 0.3325 | 0.0500 | 0.3325 | 0.3392 | 0.3432 | 0.3570 | 86.9 | 88.7 | 89.7 | 93.3 |
| Atkinson | 0.7393 | 0.0284 | 0.0284 | 0.0000 | MCD, in 75 GPM Model, but not 150 GPN <br> Not-MCD, Not Modeled <br> MCD, in 75 GPM Model, but not 150 GPN |  |  |  |  |  |  |  |
| Atkinson \& Gilmanton | 2.0345 | 0.5287 | 0.2894 | 0.2393 |  |  |  |  |  |  |  |  |
| Auburn | 7.5153 | 0.6149 | 0.6024 | 0.0125 |  |  |  |  |  |  |  |  |
| Barnstead | 5.3319 | 0.0136 | 0.0136 | 0.0000 | 0.0136 | 0.0136 | 0.0136 | 0.0136 | 100.0 | 100.0 | 100.0 | 100.0 |
| Barrington | 8.4700 | 0.1809 | 0.1301 | 0.0508 | 0.1301 | 0.1354 | 0.1373 | 0.1439 | 71.9 | 74.8 | 75.9 | 79.5 |
| Bartlett | 8.5768 | 5.5702 | 4.7897 | 0.7805 | 4.7897 | 4.9785 | 5.0386 | 5.2435 | 86.0 | 89.4 | 90.5 | 94.1 |
| Bath | 8.0751 | 0.3831 | 0.2514 | 0.1318 | 0.2514 | 0.2586 | 0.2627 | 0.2765 | 65.6 | 67.5 | 68.6 | 72.2 |
| Beans Grant | 0.0020 | 0.0005 | 0.0005 | 0.0000 |  | -MCD, N | Modeled |  |  |  |  |  |
| Beans Purchase | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | -MCD, N | Modeled |  |  |  |  |  |
| Bedford | 9.1277 | 0.0482 | 0.0472 | 0.0009 | 0.0472 | 0.0482 | 0.0482 | 0.0482 | 98.1 | 100.0 | 100.0 | 100.0 |
| Belmont | 11.0201 | 0.3619 | 0.2767 | 0.0853 | 0.2767 | 0.2904 | 0.2950 | 0.3105 | 76.4 | 80.2 | 81.5 | 85.8 |
| Bennington | 4.0817 | 0.5538 | 0.3869 | 0.1669 | 0.3869 | 0.3992 | 0.4052 | 0.4259 | 69.9 | 72.1 | 73.2 | 76.9 |
| Benton | 0.9335 | 0.0428 | 0.0342 | 0.0085 | MCD, in 75 | GPM Mod | , but not | 50 GPM |  |  |  |  |
| Berlin | 3.3544 | 0.5967 | 0.3813 | 0.2154 | 0.3813 | 0.3850 | 0.3906 | 0.4096 | 63.9 | 64.5 | 65.5 | 68.6 |
| Bethlehem | 9.6111 | 0.9408 | 0.4713 | 0.4696 | 0.4713 | 0.4882 | 0.4971 | 0.5271 | 50.1 | 51.9 | 52.8 | 56.0 |
| Boscawen | 5.8272 | 0.0978 | 0.0749 | 0.0229 | 0.0749 | 0.0776 | 0.0787 | 0.0825 | 76.6 | 79.4 | 80.5 | 84.4 |
| Bow | 5.7477 | 0.9884 | 0.9594 | 0.0291 | 0.9594 | 0.9884 | 0.9884 | 0.9884 | 97.1 | 100.0 | 100.0 | 100.0 |
| Bradford | 3.8663 | 0.2736 | 0.2081 | 0.0655 | 0.2081 | 0.2168 | 0.2198 | 0.2300 | 76.1 | 79.2 | 80.3 | 84.1 |
| Brentwood | 5.5145 | 0.0955 | 0.0638 | 0.0316 | 0.0638 | 0.0676 | 0.0688 | 0.0730 | 66.9 | 70.8 | 72.1 | 76.5 |


| OSDA150 Statistics-2000 and Modeled Losses-2025 <br> (*"Hale's Location is Not-MCD, populations were GIS estimated.) |  |  |  |  | \%Change 2000 NH OSDA150P = |  |  |  | $\begin{gathered} \hline \text { A } \\ 0 \% \end{gathered}$ | $\begin{gathered} \hline \text { B } \\ 19.6 \% \end{gathered}$ | $\begin{gathered} \hline \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \hline \text { D } \\ 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion ( $\mathrm{mi}^{2}$ ) |  | $0.0 \mathrm{mi}^{2}$ is in Gray <br> Apportion (mi ${ }^{2}$ ) 2000 |  | Modeled 2025 OSDA150L ( $\mathrm{mi}^{2}$ ) |  |  |  | \%Lost > 90\% in Gray |  |  |  |
|  |  |  | \%OSD | A150 |  |  |  |  | ost by | 025 |
|  | OSDA | OSDA150 |  |  | OSDA150L | RSDA150 | A | B | C | D | A | B | C | D |
| Bridgewater | 2.5430 | 0.1645 | 0.1373 | 0.0272 | 0.1373 | 0.1414 | 0.1432 | 0.1497 | 83.5 | 85.9 | 87.1 | 91.0 |
| Bristol | 2.9688 | 0.3571 | 0.2869 | 0.0703 | 0.2869 | 0.2954 | 0.2997 | 0.3144 | 80.3 | 82.7 | 83.9 | 88.0 |
| Brookfield | 1.6722 | 0.1841 | 0.1841 | 0.0000 | MCD, in 75 GPM Model, but not 150 GPM |  |  |  |  |  |  |  |
| Brookline | 6.1817 | 3.1667 | 2.0187 | 1.1480 | 2.0187$N$ |  |  | 2.3190 | 63.7 | 67.7 | 69.0 | 73.2 |
| Cambridge | 7.6888 | 1.9905 | 1.0722 | 0.9184 |  | Not-MCD, Not Modeled |  |  |  |  |  |  |
| Campton | 6.3282 | 2.3431 | 1.8547 | 0.4883 | 1.8547 | 1.9094 | 1.9350 | 2.0223 | 79.2 | 81.5 | 82.6 | 86.3 |
| Canaan | 8.1797 | 0.4215 | 0.2044 | 0.2171 | 0.2044 | 0.2106 | 0.2150 | 0.2299 | 48.5 | 50.0 | 51.0 | 54.5 |
| Candia | 2.9054 | 0.0614 | 0.0614 | 0.0000 | MCD, in 75 GPM Model, but not 150 GPM |  |  |  |  |  |  |  |
| Canterbury | 7.0912 | 0.1427 | 0.0961 | 0.0466 | 0.0961 | 0.0997 | 0.1012 | 0.1064 | 67.4 | 69.9 | 70.9 | 74.6 |
| Carroll | 10.4412 | 1.3683 | 1.0950 | 0.2732 | 1.0950 | 1.1089 | 1.1229 | 1.1706 | 80.0 | 81.0 | 82.1 | 85.6 |
| Center Harbor | 0.5335 | 0.0100 | 0.0100 | 0.0000 | MCD, in 75 GPM Model, but not 150 GPM Not-MCD, Not Modeled |  |  |  |  |  |  |  |
| Chandlers Purchase | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |  |  |  |  |
| Charlestown | 9.4777 | 0.6983 | 0.5791 | 0.1192 | 0.5791 | 0.6008 | 0.6106 | 0.6436 | 82.9 | 86.0 | 87.4 | 92.2 |
| Chatham | 4.0567 | 0.6920 | 0.4184 | 0.2737 | 0.4184 | 0.4349 | 0.4403 | 0.4588 | 60.5 | 62.8 | 63.6 | 66.3 |
| Chester | 4.8224 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 GPM Model, but not 150 GPM |  |  |  |  |  |  |  |
| Chesterfield | 2.1230 | 0.2618 | 0.2535 | 0.0083 | 0.2535 | 0.2609 | 0.2618 | 0.2618 | 96.8 | 99.6 | 100.0 | 100.0 |
| Chichester | 1.1432 | 0.0192 | 0.0192 | 0.0000 | 0.0192 | 0.0192 | 0.0192 | 0.0192 | 100.0 | 100.0 | 100.0 | 100.0 |
| Claremont | 9.4424 | 0.7602 | 0.6800 | 0.0803 | 0.6800 | 0.6903 | 0.7008 | 0.7366 | 89.4 | 90.8 | 92.2 | 96.9 |
| Clarksville | 1.6420 | 0.1557 | 0.0800 | 0.0757 | 0.0800 | 0.0810 | 0.0824 | 0.0872 | 51.4 | 52.0 | 52.9 | 56.0 |
| Colebrook | 5.5630 | 0.8679 | 0.6645 | 0.2034 | 0.6645 | 0.6727 | 0.6843 | 0.7238 | 76.6 | 77.5 | 78.8 | 83.4 |
| Columbia | 2.9935 | 0.8313 | 0.6348 | 0.1965 | 0.6348 | 0.6417 | 0.6508 | 0.6816 | 76.4 | 77.2 | 78.3 | 82.0 |
| Concord | 31.2152 | 0.5658 | 0.4126 | 0.1532 | 0.4126 | 0.4249 | 0.4313 | 0.4529 | 72.9 | 75.1 | 76.2 | 80.0 |
| Conway | 22.2434 | 7.6108 | 5.3063 | 2.3045 | 5.3063 | 5.4405 | 5.5241 | 5.8089 | 69.7 | 71.5 | 72.6 | 76.3 |
| Cornish | 2.6588 | 0.1517 | 0.1082 | 0.0435 | 0.1082 | 0.1129 | 0.1146 | 0.1206 | 71.3 | 74.4 | 75.6 | 79.5 |
| Crawfords Purchase | 0.1414 | 0.0030 | 0.0027 | 0.0003 |  | ot-MCD, No | t Modeled |  |  |  |  |  |
| Croydon | 0.9096 | 0.1246 | 0.1048 | 0.0198 | 0.1048 | 0.1097 | 0.1111 | 0.1160 | 84.1 | 88.1 | 89.2 | 93.1 |
| Cutts Grant | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | D-MCD, No | t Modeled |  |  |  |  |  |
| Dalton | 3.8916 | 0.4531 | 0.3123 | 0.1408 | 0.3123 | 0.3178 | 0.3222 | 0.3371 | 68.9 | 70.1 | 71.1 | 74.4 |
| Danbury | 4.6995 | 0.5186 | 0.4171 | 0.1015 | 0.4171 | 0.4295 | 0.4347 | 0.4525 | 80.4 | 82.8 | 83.8 | 87.2 |


| OSDA150 Statistics-2000 and Modeled Losses-2025 <br> (*"Hale's Location is Not-MCD, populations were GIS estimated.) |  |  |  |  | \%Chang | $2000$ | $\begin{array}{r} \text { Scє } \\ \text { O OSDA } \end{array}$ | $\begin{aligned} & \text { 1ario= } \\ & 50 \mathrm{P}= \end{aligned}$ | $\begin{gathered} \hline \text { A } \\ 0 \% \end{gathered}$ | $\begin{gathered} \hline \text { B } \\ 19.6 \% \end{gathered}$ | $\begin{gathered} \hline \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \hline \text { D } \\ 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion ( $\mathrm{mi}^{\mathbf{2}}$ ) |  | $0.0 \mathrm{mi}^{2}$ is in GrayApportion $\left(\mathrm{mi}^{2}\right) 2000$ |  | Modeled 2025 OSDA150L (mi ${ }^{\text {2 }}$ ) |  |  |  | \%Lost > 90\% in Gray |  |  |  |
|  |  |  | \%OSDA150 Lost by 2025 |  |  |  |  |
|  | OSDA | OSDA150 |  |  | OSDA150L | RSDA150 | A | B | C | D | A | B | c | D |
| Danville | 2.2677 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mo | el, but no | 150 GPM |  |  |  |  |
| Deerfield | 4.8255 | 0.0311 | 0.0311 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Deering | 4.0819 | 0.2497 | 0.2006 | 0.0491 | 0.2006 | 0.2076 | 0.2107 | 0.2212 | 80.3 | 83.1 | 84.4 | 88.6 |
| Derry | 5.0263 | 0.2822 | 0.2793 | 0.0029 | 0.2793 | 0.2822 | 0.2822 | 0.2822 | 99.0 | 100.0 | 100.0 | 100.0 |
| Dixs Grant | 0.4786 | 0.1244 | 0.0723 | 0.0521 |  | t-MCD, No | t Modeled |  |  |  |  |  |
| Dixville | 1.3326 | 0.2672 | 0.1959 | 0.0713 |  | t-MCD, No | t Modeled |  |  |  |  |  |
| Dorchester | 0.8081 | 0.1090 | 0.1032 | 0.0058 | MCD, in 75 | GPM Mod | l, but not | 150 GPM |  |  |  |  |
| Dover | 20.2108 | 1.1100 | 0.9088 | 0.2013 | 0.9088 | 0.9275 | 0.9437 | 0.9992 | 81.9 | 83.6 | 85.0 | 90.0 |
| Dublin | 1.4358 | 0.1405 | 0.1405 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Dummer | 1.8541 | 0.1594 | 0.0843 | 0.0751 | 0.0843 | 0.0852 | 0.0865 | 0.0909 | 52.9 | 53.5 | 54.3 | 57.1 |
| Dunbarton | 1.7049 | 0.0722 | 0.0320 | 0.0402 | 0.0320 | 0.0340 | 0.0347 | 0.0370 | 44.3 | 47.0 | 48.0 | 51.3 |
| Durham | 1.1529 | 0.0850 | 0.0157 | 0.0694 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| East Kingston | 1.0593 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Easton | 3.4227 | 0.5187 | 0.2102 | 0.3085 | 0.2102 | 0.2223 | 0.2273 | 0.2441 | 40.5 | 42.9 | 43.8 | 47.1 |
| Eaton | 2.0615 | 0.3567 | 0.2555 | 0.1012 | 0.2555 | 0.2683 | 0.2721 | 0.2852 | 71.6 | 75.2 | 76.3 | 79.9 |
| Effingham | 15.7493 | 1.1317 | 0.5562 | 0.5755 | 0.5562 | 0.5957 | 0.6076 | 0.6483 | 49.1 | 52.6 | 53.7 | 57.3 |
| Ellsworth | 0.0000 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Enfield | 2.7936 | 0.1971 | 0.1285 | 0.0686 | 0.1285 | 0.1334 | 0.1358 | 0.1438 | 65.2 | 67.7 | 68.9 | 73.0 |
| Epping | 3.8973 | 0.0185 | 0.0184 | 0.0001 | 0.0184 | 0.0185 | 0.0185 | 0.0185 | 99.2 | 100.0 | 100.0 | 100.0 |
| Epsom | 4.2380 | 0.2964 | 0.2502 | 0.0462 | 0.2502 | 0.2596 | 0.2634 | 0.2761 | 84.4 | 87.6 | 88.9 | 93.2 |
| Errol | 9.0857 | 0.8471 | 0.2706 | 0.5764 | 0.2706 | 0.2823 | 0.2893 | 0.3129 | 32.0 | 33.3 | 34.2 | 36.9 |
| Ervings Location | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | t-MCD, No | t Modeled |  |  |  |  |  |
| Exeter | 2.8367 | 0.0039 | 0.0039 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 150 GPM |  |  |  |  |
| Farmington | 4.0003 | 0.6226 | 0.4900 | 0.1326 | 0.4900 | 0.5109 | 0.5185 | 0.5446 | 78.7 | 82.1 | 83.3 | 87.5 |
| Fitzwilliam | 2.6940 | 0.2368 | 0.1101 | 0.1266 | 0.1101 | 0.1152 | 0.1178 | 0.1267 | 46.5 | 48.7 | 49.8 | 53.5 |
| Francestown | 4.4109 | 0.1535 | 0.1535 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Franconia | 4.5579 | 1.0345 | 0.5317 | 0.5029 | 0.5317 | 0.5524 | 0.5629 | 0.5987 | 51.4 | 53.4 | 54.4 | 57.9 |
| Franklin | 7.9789 | 0.7099 | 0.4036 | 0.3063 | 0.4036 | 0.4080 | 0.4154 | 0.4406 | 56.9 | 57.5 | 58.5 | 62.1 |
| Freedom | 9.2521 | 1.9489 | 1.0619 | 0.8869 | 1.0619 | 1.1280 | 1.1478 | 1.2154 | 54.5 | 57.9 | 58.9 | 62.4 |


| OSDA150 Statistics-2000 and Modeled Losses-2025 <br> (*"Hale's Location is Not-MCD, populations were GIS estimated.) |  |  |  |  | \%Change 2000 NH OSDA150P = |  |  |  | $\begin{array}{cc} \text { A } & \text { B } \\ 0 \% & 19.6 \% \\ \hline \end{array}$ |  | $\begin{gathered} \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \text { D } \\ 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion ( $\mathrm{mi}^{2}$ ) |  | 0.0 mi $^{2}$ is in GrayApportion ( $\mathrm{mi}^{2}$ ) 2000 |  | Modeled 2025 OSDA150L ( $\mathrm{mi}^{\mathbf{2}}$ ) |  |  |  | \%Lost > 90\% in Gray |  |  |  |
|  |  |  | \%OSD | A150 |  |  |  |  | ost by | 2025 |
|  | OSDA | OSDA150 |  |  | OSDA150L | RSDA150 | A | B | C | D | A | B | c | D |
| Fremont | 6.5313 | 0.0000 | 0.0000 | 0.0000 | MCD, in 7 | GPM Mc | , but no | 0 GPM |  |  |  |  |
| Gilford | 5.6790 | 0.2204 | 0.2059 | 0.0144 | 0.2059 | 0.2152 | 0.2182 | 0.2204 | 93.5 | 97.6 | 99.0 | 100.0 |
| Gilmanton | 2.2824 | 0.2211 | 0.2114 | 0.0097 | 0.2114 | 0.2198 | 0.2211 | 0.2211 | 95.6 | 99.4 | 100.0 | 100.0 |
| Gilsum | 1.1238 | 0.0048 | 0.0048 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 50 GPM |  |  |  |  |
| Goffstown | 5.3517 | 0.4774 | 0.3944 | 0.0830 | 0.3944 | 0.4075 | 0.4137 | 0.4347 | 82.6 | 85.4 | 86.7 | 91.1 |
| Gorham | 4.9742 | 0.3046 | 0.3046 | 0.0000 | 0.3046 | 0.3046 | 0.3046 | 0.3046 | 100.0 | 100.0 | 100.0 | 100.0 |
| Goshen | 2.2843 | 0.0589 | 0.0589 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Grafton | 2.7811 | 0.2717 | 0.2193 | 0.0524 | 0.2193 | 0.2258 | 0.2291 | 0.2400 | 80.7 | 83.1 | 84.3 | 88.3 |
| Grantham | 0.7631 | 0.2077 | 0.1914 | 0.0163 | 0.1914 | 0.2005 | 0.2030 | 0.2077 | 92.2 | 96.5 | 97.7 | 100.0 |
| Greenfield | 7.6565 | 1.0557 | 0.5575 | 0.4982 | 0.5575 | 0.5799 | 0.5908 | 0.6277 | 52.8 | 54.9 | 56.0 | 59.5 |
| Greenland | 2.7490 | 0.1948 | 0.1859 | 0.0089 | 0.1859 | 0.1930 | 0.1948 | 0.1948 | 95.5 | 99.1 | 100.0 | 100.0 |
| Greens Grant | 0.3000 | 0.0000 | 0.0000 | 0.0000 |  | t-MCD, | t Modeled |  |  |  |  |  |
| Greenville | 0.2609 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Groton | 0.9442 | 0.1360 | 0.1360 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Hadleys Purchase | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | t-MCD, N | t Modeled |  |  |  |  |  |
| **Hales Location | 0.5426 | 0.3797 | 0.1577 | 0.1184 | 0.1577 | 0.1746 | 0.1784 | 0.1914 | 41.5 | 46.0 | 47.0 | 50.4 |
| Hampstead | 2.3291 | 0.0232 | 0.0232 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 50 GPM |  |  |  |  |
| Hampton | 2.5193 | 0.0603 | 0.0401 | 0.0202 | 0.0401 | 0.0418 | 0.0427 | 0.0459 | 66.5 | 69.3 | 70.9 | 76.1 |
| Hampton Falls | 0.3041 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Hancock | 3.8484 | 0.2799 | 0.2217 | 0.0583 | 0.2217 | 0.2280 | 0.2315 | 0.2434 | 79.2 | 81.5 | 82.7 | 87.0 |
| Hanover | 4.7960 | 0.3288 | 0.2710 | 0.0578 | 0.2710 | 0.2795 | 0.2843 | 0.3008 | 82.4 | 85.0 | 86.5 | 91.5 |
| Harrisville | 1.2728 | 0.0539 | 0.0302 | 0.0237 | 0.0302 | 0.0312 | 0.0317 | 0.0335 | 56.0 | 57.9 | 58.9 | 62.2 |
| Hart's Location | 2.4236 | 0.8118 | 0.6112 | 0.2006 | 0.6112 | 0.6087 | 0.6150 | 0.6366 | 75.3 | 75.0 | 75.8 | 78.4 |
| Haverhill | 13.9047 | 0.5304 | 0.4374 | 0.0930 | 0.4374 | 0.4485 | 0.4546 | 0.4754 | 82.5 | 84.5 | 85.7 | 89.6 |
| Hebron | 1.2250 | 0.4736 | 0.3603 | 0.1134 | 0.3603 | 0.3734 | 0.3788 | 0.3972 | 76.1 | 78.8 | 80.0 | 83.9 |
| Henniker | 6.1433 | 1.4827 | 0.9162 | 0.5665 | 0.9162 | 0.9572 | 0.9738 | 1.0303 | 61.8 | 64.6 | 65.7 | 69.5 |
| Hill | 1.7959 | 0.2249 | 0.1292 | 0.0957 | 0.1292 | 0.1356 | 0.1383 | 0.1473 | 57.4 | 60.3 | 61.5 | 65.5 |
| Hillsborough | 5.6983 | 0.4166 | 0.3561 | 0.0605 | 0.3561 | 0.3674 | 0.3721 | 0.3880 | 85.5 | 88.2 | 89.3 | 93.1 |
| Hinsdale | 7.2866 | 0.3016 | 0.2673 | 0.0343 | 0.2673 | 0.2753 | 0.2797 | 0.2946 | 88.6 | 91.3 | 92.7 | 97.7 |


| OSDA150 Statistics-2000 and Modeled Losses-2025 <br> (*"Hale's Location is Not-MCD, populations were GIS estimated.) |  |  |  |  | \%Change 2000 NH OSDA150P = |  |  |  | $\begin{gathered} \hline \text { A } \\ 0 \% \end{gathered}$ | $\begin{gathered} \hline \text { B } \\ 19.6 \% \end{gathered}$ | $\begin{gathered} \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \text { D } \\ 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion ( $\mathrm{mi}^{2}$ ) |  | $0.0 \mathrm{mi}^{2}$ is in Gray <br> Apportion (mi²) 2000 |  | Modeled 2025 OSDA150L ( $\mathrm{mi}^{\mathbf{2}}$ ) |  |  |  | \%Lost > 90\% in Gray |  |  |  |
|  |  |  | \%OSD | A150 |  |  |  |  | ost by | 2025 |
|  | OSDA | OSDA150 |  |  | OSDA150L | RSDA150 | A | B | C | D | A | B | c | D |
| Holderness | 3.5932 | 0.1652 | 0.1651 | 0.0001 | 0.1651 | 0.1652 | 0.1652 | 0.1652 | 99.9 | 100.0 | 100.0 | 100.0 |
| Hollis | 10.9472 | 4.9687 | 2.7518 | 2.2169 | 2.7518 | 2.9057 | 2.9657 | 3.1699 | 55.4 | 58.5 | 59.7 | 63.8 |
| Hooksett | 8.3499 | 1.1069 | 1.0162 | 0.0907 | 1.0162 | 1.0655 | 1.0797 | 1.1069 | 91.8 | 96.3 | 97.5 | 100.0 |
| Hopkinton | 15.2641 | 0.7486 | 0.5564 | 0.1922 | 0.5564 | 0.5778 | 0.5874 | 0.6204 | 74.3 | 77.2 | 78.5 | 82.9 |
| Hudson | 9.9940 | 1.6782 | 1.6363 | 0.0419 | 1.6363 | 1.6782 | 1.6782 | 1.6782 | 97.5 | 100.0 | 100.0 | 100.0 |
| Jackson | 1.7718 | 0.1785 | 0.0808 | 0.0977 | 0.0808 | 0.0859 | 0.0876 | 0.0937 | 45.3 | 48.1 | 49.1 | 52.5 |
| Jaffrey | 5.2123 | 0.2704 | 0.2513 | 0.0191 | 0.2513 | 0.2582 | 0.2620 | 0.2704 | 92.9 | 95.5 | 96.9 | 100.0 |
| Jefferson | 3.0526 | 0.1493 | 0.1441 | 0.0052 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Keene | 10.3016 | 1.5922 | 1.2672 | 0.3250 | 1.2672 | 1.2873 | 1.3087 | 1.3816 | 79.6 | 80.9 | 82.2 | 86.8 |
| Kensington | 2.2493 | 0.0334 | 0.0334 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Kilkenny | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | t-MCD, No | t Modeled |  |  |  |  |  |
| Kingston | 11.0632 | 0.8105 | 0.2991 | 0.5114 | 0.2991 | 0.3174 | 0.3273 | 0.3609 | 36.9 | 39.2 | 40.4 | 44.5 |
| Laconia | 2.4572 | 0.1907 | 0.1907 | 0.0000 | MCD, in 75 | GPM Mode | el, but not | 150 GPM |  |  |  |  |
| Lancaster | 7.3922 | 0.5968 | 0.2903 | 0.3065 | 0.2903 | 0.2957 | 0.3032 | 0.3287 | 48.6 | 49.5 | 50.8 | 55.1 |
| Landaff | 1.1071 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Langdon | 2.8431 | 0.0166 | 0.0112 | 0.0054 | 0.0112 | 0.0118 | 0.0120 | 0.0128 | 67.7 | 71.3 | 72.6 | 77.0 |
| Lebanon | 6.6153 | 0.3527 | 0.3527 | 0.0000 | 0.3527 | 0.3527 | 0.3527 | 0.3527 | 100.0 | 100.0 | 100.0 | 100.0 |
| Lee | 4.3006 | 0.0404 | 0.0203 | 0.0201 | 0.0203 | 0.0216 | 0.0221 | 0.0239 | 50.2 | 53.5 | 54.8 | 59.2 |
| Lempster | 3.2296 | 0.0778 | 0.0704 | 0.0073 | 0.0704 | 0.0733 | 0.0743 | 0.0777 | 90.6 | 94.3 | 95.6 | 99.9 |
| Lincoln | 3.9954 | 0.3620 | 0.3411 | 0.0209 | 0.3411 | 0.3480 | 0.3528 | 0.3620 | 94.2 | 96.1 | 97.5 | 100.0 |
| Lisbon | 6.0362 | 0.4060 | 0.3898 | 0.0161 | 0.3898 | 0.3962 | 0.4002 | 0.4060 | 96.0 | 97.6 | 98.6 | 100.0 |
| Litchfield | 13.5641 | 2.1199 | 1.8833 | 0.2366 | 1.8833 | 1.9880 | 2.0169 | 2.1155 | 88.8 | 93.8 | 95.1 | 99.8 |
| Littleton | 4.4888 | 0.0937 | 0.0547 | 0.0390 | 0.0547 | 0.0561 | 0.0570 | 0.0599 | 58.4 | 59.9 | 60.8 | 63.9 |
| Londonderry | 10.4272 | 0.1801 | 0.1437 | 0.0364 | 0.1437 | 0.1494 | 0.1520 | 0.1609 | 79.8 | 82.9 | 84.4 | 89.3 |
| Loudon | 5.7607 | 0.6054 | 0.4612 | 0.1442 | 0.4612 | 0.4804 | 0.4877 | 0.5126 | 76.2 | 79.4 | 80.6 | 84.7 |
| Low \& Burbanks | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | t-MCD, No | t Modeled |  |  |  |  |  |
| Lyman | 1.4947 | 0.2476 | 0.2476 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Lyme | 4.7116 | 0.0906 | 0.0421 | 0.0485 | 0.0421 | 0.0438 | 0.0448 | 0.0480 | 46.5 | 48.3 | 49.4 | 52.9 |
| Lyndeborough | 2.3059 | 0.0818 | 0.0704 | 0.0114 | 0.0704 | 0.0726 | 0.0734 | 0.0761 | 86.1 | 88.7 | 89.7 | 93.1 |


| OSDA150 Statistics-2000 and Modeled Losses-2025 <br> (*"Hale's Location is Not-MCD, populations were GIS estimated.) |  |  |  |  | \%Change 2000 NH OSDA150P = |  |  |  | $\begin{gathered} \text { A } \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline B \\ 19.6 \% \end{gathered}$ | $\begin{gathered} \hline \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \hline D \\ 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion ( $\mathrm{mi}^{2}$ ) |  | $0.0 \mathrm{mi}^{2}$ is in Gray <br> Apportion ( $\mathrm{mi}^{2}$ ) 2000 |  | Modeled 2025 OSDA150L ( $\mathrm{mi}^{\mathbf{2}}$ ) |  |  |  | \%Lost > 90\% in Gray |  |  |  |
|  |  |  | \%OSD | A150 |  |  |  |  | Lost b | 2025 |
|  | OSDA | OSDA150 |  |  | OSDA150L |  | A | B | C | D | A | B | C | D |
| Madbury | 4.3967 | 0.4131 | 0.2879 | 0.1252 | 0.2879 | 0.3018 | 0.3069 | 0.3242 | 69.7 | 73.1 | 74.3 | 78.5 |
| Madison | 9.0359 | 4.1133 | 2.4215 | 1.6917 | 2.4215 | 2.5611 | 2.6040 | 2.7499 | 58.9 | 62.3 | 63.3 | 66.9 |
| Manchester | 18.4761 | 2.5047 | 2.3965 | 0.1082 | 2.3965 | 2.4418 | 2.4842 | 2.5047 | 95.7 | 97.5 | 99.2 | 100.0 |
| Marlborough | 0.5343 | 0.0225 | 0.0218 | 0.0006 | 0.0218 | 0.0224 | 0.0225 | 0.0225 | 97.2 | 99.8 | 100.0 | 100.0 |
| Marlow | 1.6060 | 0.1135 | 0.1135 | 0.0000 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| Martins Location | 0.5428 | 0.0000 | 0.0000 | 0.0000 |  | ot-MCD, No | ot Modeled |  |  |  |  |  |
| Mason | 3.4564 | 0.0745 | 0.0745 | 0.0000 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| Meredith | 2.5901 | 0.0515 | 0.0201 | 0.0315 | 0.0201 | 0.0218 | 0.0225 | 0.0246 | 38.9 | 42.4 | 43.6 | 47.7 |
| Merrimack | 17.8525 | 3.7766 | 3.4874 | 0.2892 | 3.4874 | 3.6169 | 3.6709 | 3.7766 | 92.3 | 95.8 | 97.2 | 100.0 |
| Middleton | 0.1590 | 0.0295 | 0.0295 | 0.0000 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| Milan | 6.8533 | 0.6562 | 0.2347 | 0.4215 | 0.2347 | 0.2395 | 0.2452 | 0.2645 | 35.8 | 36.5 | 37.4 | 40.3 |
| Milford | 9.0554 | 4.0325 | 3.3181 | 0.7145 | 3.3181 | 3.4461 | 3.4995 | 3.6815 | 82.3 | 85.5 | 86.8 | 91.3 |
| Millsfield | 0.4027 | 0.0194 | 0.0165 | 0.0029 |  | ot-MCD, No | ot Modeled |  |  |  |  |  |
| Milton | 3.5419 | 0.5950 | 0.5235 | 0.0716 | 0.5235 | 0.5500 | 0.5592 | 0.5907 | 88.0 | 92.4 | 94.0 | 99.3 |
| Monroe | 4.0531 | 0.4170 | 0.3332 | 0.0838 | 0.3332 | 0.3427 | 0.3473 | 0.3629 | 79.9 | 82.2 | 83.3 | 87.0 |
| Mont Vernon | 0.4135 | 0.0595 | 0.0595 | 0.0000 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| Moultonborough | 7.2951 | 0.2882 | 0.2882 | 0.0000 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| Nashua | 21.0281 | 11.4732 | 10.2510 | 1.2222 | 10.2510 | 10.4008 | 10.5827 | 11.2020 | 89.3 | 90.7 | 92.2 | 97.6 |
| Nelson | 0.7394 | 0.0627 | 0.0270 | 0.0356 | 0.0270 | 0.0281 | 0.0287 | 0.0309 | 43.1 | 44.8 | 45.8 | 49.3 |
| New Boston | 9.4485 | 0.2089 | 0.1363 | 0.0726 | 0.1363 | 0.1452 | 0.1481 | 0.1577 | 65.2 | 69.5 | 70.9 | 75.5 |
| New Castle | 0.0000 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| New Durham | 5.0328 | 0.2258 | 0.1939 | 0.0320 | 0.1939 | 0.2059 | 0.2086 | 0.2178 | 85.8 | 91.2 | 92.4 | 96.4 |
| New Hampton | 5.6452 | 0.7172 | 0.6246 | 0.0927 | 0.6246 | 0.6488 | 0.6571 | 0.6852 | 87.1 | 90.5 | 91.6 | 95.5 |
| New Ipswich | 5.8510 | 0.2196 | 0.0844 | 0.1352 | 0.0844 | 0.0907 | 0.0933 | 0.1021 | 38.4 | 41.3 | 42.5 | 46.5 |
| New London | 1.2531 | 0.0101 | 0.0019 | 0.0082 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| Newbury | 2.0623 | 0.2868 | 0.1676 | 0.1192 | 0.1676 | 0.1773 | 0.1805 | 0.1913 | 58.4 | 61.8 | 62.9 | 66.7 |
| Newfields | 0.7900 | 0.0616 | 0.0616 | 0.0000 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| Newington | 3.2411 | 0.0383 | 0.0383 | 0.0000 | 0.0383 | 0.0383 | 0.0383 | 0.0383 | 100.0 | 100.0 | 100.0 | 100.0 |
| Newmarket | 1.0477 | 0.0579 | 0.0554 | 0.0025 | 0.0554 | 0.0570 | 0.0578 | 0.0579 | 95.6 | 98.3 | 99.7 | 100.0 |


| OSDA150 Statistics-2000 and Modeled Losses-2025 <br> (*"Hale's Location is Not-MCD, populations were GIS estimated.) |  |  |  |  | \%Change 2000 NH OSDA150P = |  |  |  | $\begin{gathered} \hline \text { A } \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} \text { B } \\ 19.6 \% \\ \hline \end{gathered}$ | $\begin{gathered} \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \hline D \\ 100 \% \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion (mi') |  | $0.0 \mathrm{mi}^{\mathbf{2}}$ is in Gray Apportion (mi ${ }^{2}$ ) 2000 |  | Modeled 2025 OSDA150L (mi') |  |  |  | \%Lost > 90\% in Gray \%OSDA150 Lost by 2025 |  |  |  |
|  | OSDA | OSDA150 | OSDA150L | RSDA150 | A | B | C | D | A | B | C | D |
| Newport | 6.1321 | 0.7752 | 0.6669 | 0.1083 | 0.6669 | 0.6812 | 0.6909 | 0.7242 | 86.0 | 87.9 | 89.1 | 93.4 |
| Newton | 4.0170 | 0.0868 | 0.0850 | 0.0018 | 0.0850 | 0.0868 | 0.0868 | 0.0868 | 98.0 | 100.0 | 100.0 | 100.0 |
| North Hampton | 3.1790 | 0.3070 | 0.2367 | 0.0702 | 0.2367 | 0.2450 | 0.2491 | 0.2629 | 77.1 | 79.8 | 81.1 | 85.7 |
| Northfield | 3.0896 | 0.0165 | 0.0165 | 0.0000 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 100.0 | 100.0 | 100.0 | 100.0 |
| Northumberland | 6.8451 | 0.4697 | 0.3895 | 0.0802 | 0.3895 | 0.3928 | 0.3978 | 0.4150 | 82.9 | 83.6 | 84.7 | 88.3 |
| Northwood | 0.4059 | 0.0003 | 0.0003 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Nottingham | 3.2912 | 0.0111 | 0.0111 | 0.0000 | MCD, in 75 | GPM Mod | I, but not | 50 GPM |  |  |  |  |
| Odell | 0.0008 | 0.0002 | 0.0001 | 0.0001 |  | -MCD, N | Modeled |  |  |  |  |  |
| Orange | 1.0032 | 0.1408 | 0.1408 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Orford | 5.0983 | 0.2891 | 0.2386 | 0.0505 | 0.2386 | 0.2453 | 0.2489 | 0.2610 | 82.5 | 84.9 | 86.1 | 90.3 |
| Ossipee | 24.5454 | 8.6800 | 5.1535 | 3.5265 | 5.1535 | 5.4506 | 5.5413 | 5.8505 | 59.4 | 62.8 | 63.8 | 67.4 |
| Pelham | 9.6175 | 2.6740 | 2.1166 | 0.5575 | 2.1166 | 2.3009 | 2.3382 | 2.4651 | 79.2 | 86.0 | 87.4 | 92.2 |
| Pembroke | 5.4191 | 0.8559 | 0.6098 | 0.2461 | 0.6098 | 0.6347 | 0.6453 | 0.6813 | 71.2 | 74.2 | 75.4 | 79.6 |
| Peterborough | 9.0865 | 0.9263 | 0.7651 | 0.1612 | 0.7651 | 0.7882 | 0.8002 | 0.8413 | 82.6 | 85.1 | 86.4 | 90.8 |
| Piermont | 3.6132 | 0.0366 | 0.0287 | 0.0078 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Pinkham's Grant | 0.0226 | 0.0000 | 0.0000 | 0.0000 |  | -MCD, N | Modeled |  |  |  |  |  |
| Pittsburg | 18.3796 | 3.0949 | 1.1476 | 1.9473 | 1.1476 | 1.1728 | 1.1963 | 1.2764 | 37.1 | 37.9 | 38.7 | 41.2 |
| Pittsfield | 0.3487 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Plainfield | 3.2034 | 0.1630 | 0.1265 | 0.0366 | 0.1265 | 0.1307 | 0.1326 | 0.1394 | 77.6 | 80.1 | 81.4 | 85.5 |
| Plaistow | 5.1010 | 0.6419 | 0.6419 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Plymouth | 6.1875 | 0.1419 | 0.1380 | 0.0039 | 0.1380 | 0.1419 | 0.1419 | 0.1419 | 97.3 | 100.0 | 100.0 | 100.0 |
| Portsmouth | 5.1207 | 0.4550 | 0.4527 | 0.0023 | 0.4527 | 0.4550 | 0.4550 | 0.4550 | 99.5 | 100.0 | 100.0 | 100.0 |
| Randolph | 1.1823 | 0.1062 | 0.1059 | 0.0003 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Raymond | 6.0224 | 0.0094 | 0.0082 | 0.0012 | 0.0082 | 0.0085 | 0.0087 | 0.0092 | 87.0 | 90.3 | 91.9 | 97.2 |
| Richmond | 1.0641 | 0.2374 | 0.1480 | 0.0894 | 0.1480 | 0.1546 | 0.1574 | 0.1670 | 62.3 | 65.1 | 66.3 | 70.4 |
| Rindge | 5.1548 | 0.4339 | 0.2815 | 0.1523 | 0.2815 | 0.2944 | 0.2995 | 0.3169 | 64.9 | 67.8 | 69.0 | 73.0 |
| Rochester | 17.6253 | 2.3227 | 1.9097 | 0.4130 | 1.9097 | 1.9850 | 2.0209 | 2.1432 | 82.2 | 85.5 | 87.0 | 92.3 |
| Rollinsford | 5.6500 | 0.8136 | 0.8136 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |
| Roxbury | 0.0973 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 50 GPM |  |  |  |  |


| OSDA150 Statistics-2000 and Modeled Losses-2025 (*"Hale's Location is Not-MCD, populations were GIS estimated.) |  |  |  |  | \%Change 2000 NH OSDA150P = |  |  |  | $\begin{gathered} \text { A } \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline B \\ 19.6 \% \end{gathered}$ | $\begin{gathered} \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \hline \text { D } \\ 100 \% \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion ( $\mathrm{mi}^{2}$ ) |  | $0.0 \mathrm{mi}^{2}$ is in Gray Apportion (mi ${ }^{2}$ ) 2000 |  | Modeled 2025 OSDA150L ( $\mathrm{mi}^{\mathbf{2}}$ ) |  |  |  | \%Lost > 90\% in Gray |  |  |  |
|  |  |  | \%OSD | A150 |  |  |  |  | ost by | 2025 |
|  | OSDA | OSDA150 |  |  | OSDA150L | RSDA150 | A | B | C | D | A | B | C | D |
| Rumney | 6.3245 | 1.1397 | 0.8858 | 0.2539 | 0.8858 | 0.9111 | 0.9245 | 0.9700 | 77.7 | 79.9 | 81.1 | 85.1 |
| Rye | 2.6505 | 0.1102 | 0.1082 | 0.0020 | 0.1082 | 0.1102 | 0.1102 | 0.1102 | 98.2 | 100.0 | 100.0 | 100.0 |
| Salem | 8.0400 | 0.0126 | 0.0126 | 0.0000 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 100.0 | 100.0 | 100.0 | 100.0 |
| Salisbury | 6.1006 | 0.1660 | 0.0747 | 0.0913 | 0.0747 | 0.0791 | 0.0806 | 0.0858 | 45.0 | 47.6 | 48.6 | 51.7 |
| Sanbornton | 6.1367 | 0.2514 | 0.1221 | 0.1292 | 0.1221 | 0.1288 | 0.1310 | 0.1384 | 48.6 | 51.2 | 52.1 | 55.1 |
| Sandown | 3.7160 | 0.0111 | 0.0111 | 0.0000 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 100.0 | 100.0 | 100.0 | 100.0 |
| Sandwich | 7.2948 | 1.3897 | 0.6954 | 0.6942 | 0.6954 | 0.7299 | 0.7425 | 0.7854 | 50.0 | 52.5 | 53.4 | 56.5 |
| Sargents Purchase | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | t-MCD, No | t Modeled |  |  |  |  |  |
| Seabrook | 0.9755 | 0.1106 | 0.0962 | 0.0143 | 0.0962 | 0.1001 | 0.1019 | 0.1082 | 87.0 | 90.5 | 92.2 | 97.8 |
| Second College | 4.5713 | 1.1879 | 0.6541 | 0.5338 |  | t-MCD, No | t Modeled |  |  |  |  |  |
| Sharon | 3.6251 | 0.1877 | 0.0745 | 0.1132 | 0.0745 | 0.0765 | 0.0782 | 0.0838 | 39.7 | 40.8 | 41.7 | 44.7 |
| Shelburne | 5.6392 | 2.5742 | 1.7680 | 0.8062 | 1.7680 | 1.7846 | 1.8079 | 1.8875 | 68.7 | 69.3 | 70.2 | 73.3 |
| Somersworth | 6.5860 | 0.1085 | 0.0983 | 0.0103 | 0.0983 | 0.1002 | 0.1017 | 0.1068 | 90.5 | 92.3 | 93.7 | 98.4 |
| South Hampton | 0.7002 | 0.0013 | 0.0013 | 0.0000 | MCD, in 75 | GPM Mod | del, but not | 150 GPM |  |  |  |  |
| Springfield | 0.8621 | 0.1127 | 0.0806 | 0.0320 | 0.0806 | 0.0852 | 0.0866 | 0.0915 | 71.6 | 75.6 | 76.9 | 81.2 |
| Stark | 6.1909 | 2.1546 | 1.4520 | 0.7026 | 1.4520 | 1.4683 | 1.4883 | 1.5561 | 67.4 | 68.1 | 69.1 | 72.2 |
| Stewartstown | 3.3158 | 0.3923 | 0.1841 | 0.2081 | 0.1841 | 0.1865 | 0.1902 | 0.2031 | 46.9 | 47.5 | 48.5 | 51.8 |
| Stoddard | 0.6704 | 0.0248 | 0.0156 | 0.0093 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Strafford | 2.1514 | 0.1499 | 0.1499 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Stratford | 6.1742 | 1.5534 | 1.0593 | 0.4941 | 1.0593 | 1.0733 | 1.0898 | 1.1459 | 68.2 | 69.1 | 70.2 | 73.8 |
| Stratham | 2.9143 | 0.0094 | 0.0092 | 0.0002 | 0.0092 | 0.0094 | 0.0094 | 0.0094 | 98.0 | 100.0 | 100.0 | 100.0 |
| Success | 2.6449 | 0.6873 | 0.3638 | 0.3235 |  | t-MCD, No | t Modeled |  |  |  |  |  |
| Sugar Hill | 0.4519 | 0.0484 | 0.0484 | 0.0000 | 0.0484 | 0.0484 | 0.0484 | 0.0484 | 100.0 | 100.0 | 100.0 | 100.0 |
| Sullivan | 0.1261 | 0.0000 | 0.0000 | 0.0000 | MCD, in 75 | GPM Mod | lel, but not | 150 GPM |  |  |  |  |
| Sunapee | 0.6131 | 0.0616 | 0.0616 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Surry | 2.1610 | 0.0754 | 0.0352 | 0.0402 | 0.0352 | 0.0367 | 0.0376 | 0.0406 | 46.7 | 48.7 | 49.8 | 53.9 |
| Sutton | 6.2595 | 0.1991 | 0.1451 | 0.0540 | 0.1451 | 0.1509 | 0.1528 | 0.1596 | 72.9 | 75.8 | 76.8 | 80.2 |
| Swanzey | 11.7095 | 5.2871 | 4.0440 | 1.2431 | 4.0440 | 4.1696 | 4.2342 | 4.4541 | 76.5 | 78.9 | 80.1 | 84.2 |
| Tamworth | 15.3105 | 5.2208 | 2.8763 | 2.3445 | 2.8763 | 3.0350 | 3.0904 | 3.2791 | 55.1 | 58.1 | 59.2 | 62 |


| OSDA150 Statistics-2000 and Modeled Losses-2025 <br> (*"Hale's Location is Not-MCD, populations were GIS estimated.) |  |  |  |  | \%Chang | 2000 N | $\begin{array}{r} \text { Sct } \\ \text { OSDA } \end{array}$ | $\begin{aligned} & \text { nario= } \\ & 50 \mathrm{P}= \end{aligned}$ | $\begin{gathered} \hline \text { A } \\ 0 \% \end{gathered}$ | $\begin{gathered} \text { B } \\ 19.6 \% \end{gathered}$ | $\begin{gathered} \hline \text { C } \\ 39.2 \% \end{gathered}$ | $\begin{gathered} \hline \text { D } \\ 100 \% \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Town Name | Apportion ( $\mathrm{mi}^{\mathbf{2}}$ ) |  | 0.0 mi $^{2}$ is in GrayApportion $\left(\mathrm{mi}^{2}\right) 2000$ |  | Modeled 2025 OSDA150L ( $\mathrm{mi}^{2}$ ) |  |  |  | \%Lost > 90\% in Gray |  |  |  |
|  |  |  | \%OSDA150 Lost by 2025 |  |  |  |  |
|  | OSDA | OSDA150 |  |  | A | B | C | D | A | B | C | D |
| Temple | 3.2135 | 0.0000 |  |  | 0.0000 | 0.0000 | MCD, in 7 | PM Mo | but | 0 GPM |  |  |  |  |
| Thompson \& Meserve | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | ot-MCD, No | t Modeled |  |  |  |  |  |
| Thornton | 8.5768 | 3.2370 | 2.3950 | 0.8420 | 2.3950 | 2.4695 | 2.5035 | 2.6193 | 74.0 | 76.3 | 77.3 | 80.9 |
| Tilton | 3.2479 | 0.9021 | 0.9021 | 0.0000 | MCD, in 75 | GPM Mod | el, but not | 150 GPM |  |  |  |  |
| Troy | 1.0683 | 0.0119 | 0.0119 | 0.0000 | MCD, in 75 | GPM Mod | l, but not | 150 GPM |  |  |  |  |
| Tuftonboro | 8.4743 | 0.0559 | 0.0229 | 0.0330 | 0.0229 | 0.0247 | 0.0252 | 0.0272 | 41.0 | 44.1 | 45.2 | 48.7 |
| Unity | 1.0814 | 0.0405 | 0.0376 | 0.0029 | 0.0376 | 0.0389 | 0.0393 | 0.0405 | 92.8 | 95.9 | 96.9 | 100.0 |
| Unorganized Territory | 0.5033 | 0.0053 | 0.0053 | 0.0000 |  | ot-MCD, No | t Modeled |  |  |  |  |  |
| Wakefield | 8.9241 | 2.8047 | 2.2711 | 0.5336 | 2.2711 | 2.3847 | 2.4175 | 2.5291 | 81.0 | 85.0 | 86.2 | 90.2 |
| Walpole | 7.8601 | 0.3975 | 0.2762 | 0.1213 | 0.2762 | 0.2866 | 0.2925 | 0.3126 | 69.5 | 72.1 | 73.6 | 78.6 |
| Warner | 6.5222 | 0.9770 | 0.7933 | 0.1837 | 0.7933 | 0.8278 | 0.8393 | 0.8785 | 81.2 | 84.7 | 85.9 | 89.9 |
| Warren | 2.5439 | 0.7468 | 0.6144 | 0.1324 | 0.6144 | 0.6323 | 0.6416 | 0.6732 | 82.3 | 84.7 | 85.9 | 90.1 |
| Washington | 0.6842 | 0.0526 | 0.0524 | 0.0003 | MCD, in 75 | GPM Mod | , but not | 150 GPM |  |  |  |  |
| Waterville Valley | 2.5609 | 0.0490 | 0.0300 | 0.0190 | 0.0300 | 0.0312 | 0.0319 | 0.0340 | 61.2 | 63.7 | 65.0 | 69.4 |
| Weare | 7.9137 | 0.0603 | 0.0602 | 0.0000 | 0.0602 | 0.0603 | 0.0603 | 0.0603 | 99.9 | 100.0 | 100.0 | 100.0 |
| Webster | 6.8985 | 0.2589 | 0.1665 | 0.0924 | 0.1665 | 0.1739 | 0.1765 | 0.1855 | 64.3 | 67.2 | 68.2 | 71.7 |
| Wentworth | 3.9275 | 0.6450 | 0.4696 | 0.1754 | 0.4696 | 0.4843 | 0.4909 | 0.5136 | 72.8 | 75.1 | 76.1 | 79.6 |
| Wentworths Location | 1.7221 | 0.4471 | 0.3184 | 0.1287 |  | ot-MCD, No | t Modeled |  |  |  |  |  |
| Westmoreland | 3.3433 | 0.1037 | 0.0572 | 0.0465 | 0.0572 | 0.0595 | 0.0607 | 0.0647 | 55.1 | 57.4 | 58.5 | 62.4 |
| Whitefield | 4.8643 | 0.2794 | 0.2038 | 0.0755 | 0.2038 | 0.2056 | 0.2082 | 0.2170 | 73.0 | 73.6 | 74.5 | 77.7 |
| Wilmot | 2.9318 | 0.0518 | 0.0474 | 0.0043 | 0.0474 | 0.0491 | 0.0497 | 0.0518 | 91.6 | 94.7 | 95.9 | 100.0 |
| Wilton | 5.1023 | 0.5651 | 0.4570 | 0.1081 | 0.4570 | 0.4706 | 0.4768 | 0.4980 | 80.9 | 83.3 | 84.4 | 88.1 |
| Winchester | 8.3111 | 2.1063 | 1.3906 | 0.7156 | 1.3906 | 1.4343 | 1.4589 | 1.5424 | 66.0 | 68.1 | 69.3 | 73.2 |
| Windham | 3.4105 | 0.0263 | 0.0262 | 0.0000 | 0.0262 | 0.0263 | 0.0263 | 0.0263 | 99.9 | 100.0 | 100.0 | 100.0 |
| Windsor | 1.3670 | 0.2651 | 0.1578 | 0.1073 | MCD, in 75 | GPM Mod | l, but not | 150 GPM |  |  |  |  |
| Wolfeboro | 6.2675 | 0.1150 | 0.1150 | 0.0000 | MCD, in 75 | GPM Mod | , but not | 150 GPM |  |  |  |  |
| Woodstock | 3.7876 | 1.0742 | 1.0009 | 0.0732 | 1.0009 | 1.0202 | 1.0309 | 1.0673 | 93.2 | 95.0 | 96.0 | 99.4 |


[^0]:    ${ }^{1}$ Transmissivity based on a driller log provides a 2-dimensional estimate, unless the aquifer is homogeneous, isotropic and of large extent. In addition, transmissivity estimated from driller logs are typically extremely coarse estimates since they do not recognize boundary conditions and other constraints, and they are a function of the pumping capability and patience of the driller. A pumping-test value provides a true 3-dimensional average of transmissivity. However, since such information is difficult to obtain for a statewide region, most transmissivity polygons in the USGS study were based on driller logs only.

[^1]:    ${ }^{2}$ To demonstrate that the SPR provides only a measure of protection in the immediate vicinity of the wellhead, consider the fact that while a 75 gpm well requires only a 300 ft SPR, it would require an circular annual recharge-area with a radius of 923 ft , assuming no groundwater inflow, and an annual recharge of 23.6 inches, the norm for the Oyster River watershed in NH, over 1976-1986 (Lough, 1992). This demonstrates that SPR is an absolute minimum protection, and is by far smaller than a true wellhead protection area.

[^2]:    ${ }^{3}$ A water system has been defined by the federal government to be any public or private water supply that serves 15 or more connections, or 25 or more people for at least 60 days annually (US Government, Code of Federal Regulations, 2002).

